Radio mode feedback, in which most of the energy of an active galactic nucleus (AGN) is released in a kinetic form via radio-emitting jets, is thought to play an important role in the maintenance of massive galaxies in the present-day Universe. We study the link between radio emission and the properties of the central black hole in a large sample of local radio galaxies drawn from the Sloan Digital Sky Survey (SDSS), based on the catalogue of Best & Heckman (2012). Our sample is mainly dominated by massive black holes (mostly in the range 10 8 − 10 9 M ) accreting at very low Eddington ratios (typically λ < 0.01). In broad agreement with previously reported trends, we find that radio galaxies are preferentially associated with the more massive black holes, and that the radio loudness parameter seems to increase with decreasing Eddington ratio. We compare our results with previous studies in the literature, noting potential biases. The majority of the local radio galaxies in our sample are currently in a radiatively inefficient accretion regime, where kinetic feedback dominates over radiative feedback. We discuss possible physical interpretations of the observed trends in the context of a two-stage feedback process involving a transition in the underlying accretion modes.
Cell migration plays an important role in physiological and pathological processes where the fibrillar morphology of extracellular matrice (ECM) could regulate the migration dynamics. To mimic the morphological characteristics of fibrillar matrix structures, low-voltage continuous electrospinning was adapted to construct straight, wavy, looped and gridded fibre patterns made of polystyrene (of fibre diameter ca. 3 μm). With microfibres deposited onto non-passivated surfaces, cells were permitted to explore their different shapes in response to the directly-adhered fibre, as well as to the neighbouring patterns. For all the patterns studied, analysing cellular migration dynamics of MDA-MB-231 (a highly migratory breast cancer cell line) demonstrated a switch in behaviour when the pattern features approach the upper limit of the cell minor axis. Our findings suggest that, although cells dynamically adjust their shapes in response to different fibrillar environments during migration, their ability to divert from an existing fibre track is limited by the size along the cell minor axis. We therefore conclude that the upper limit of cell minor axis might act as a guide for the design of microfibre patterns for different purposes of cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.