The high and selective catalytic activities of tyrosinase (Tyr) have frequently led to its application in sensitive biosensors. However, in affinity-based biosensors, the use of Tyr as a catalytic label is less common compared to horseradish peroxidase and alkaline phosphatase owing to the fact that phenolic Tyr substrates have yet to be investigated in detail. Herein, four phenolic compounds that have lower formal potentials than phenol were examined for their applicability as Tyr substrates, and three reducing agents were examined as potential strong reducing agents for electrochemical−chemical (EC) redox cycling involving an electrode, a Tyr product, and a reducing agent. The combination of 4methoxyphenol (MP) and ammonia-borane (AB) allows for (i) a high electrochemical signal level owing to rapid EC redox cycling and (ii) a low electrochemical background level owing to the slow oxidation of AB at a low applied potential and no reaction between MP and AB. When this combination was applied to an electrochemical immunosensor for parathyroid hormone (PTH) detection, a detection limit of 2 pg/mL was obtained. This detection limit is significantly lower than that obtained when a combination of phenol and AB was employed (300 pg/mL). It was also found that the developed immunosensor works well in PTH detection in clinical serum samples. This new phenolic substrate could therefore pave the way for Tyr to be more commonly used as a catalytic label in affinitybased biosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.