A flexplate is a mechanical component that couples the crankshaft to the torque converter of a car with automatic transmission. A higher axial stiffness is one of significant requirements for it in order to ensure its performance. In this paper an optimum design of the flexplate disk is described that maximizes the axial stiffness of the flexplate disk with weight and inertial moment constraints. The strategy for optimizing the layout of the disk is to perform topology optimization first then position optimization. The relation is presented which shows the variation of axial stiffness with respect to changes of the number, shape and position of the holes on the flexplate disk. The research shows that the shape of the hole punched on the disk does not affect the axial stiffness greatly. Thus, the manufacturing cost should be considered first in the optimum design of the flexplate disk
The efficiency of the element removal or addition is of significance for evolutionary structural optimization (ESO) process. The key is to find an appropriate rejection criterion (RC) which allows to assess the contribution of each element to the specified behavior(stress, stiffness, displacement, etc.)of the structure, and to subsequently remove elements with least contribution. This paper proposed a varying elements removal ratio (VERR) method which uses a larger ERR (Element Rejection Ratio) value at early iterations where exist a lot of redundant material, and decreases the value of ERR in the optimal process to lessen the number of elements removed at later iterations. Meanwhile, this paper proposed a strategy for element addition based on stress level and the contribution of elements to the structure in order to decide which elements should be added to the model and the sequence of the element addition. With the proposed VERR and the strategy, the optimization procedure of the structure evolves more quickly and smoothly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.