In this paper, we present experimental measurements of slip length of deionized (DI) water flow on a silicon surface and a graphite surface by using atomic force microscope. The results show that the measured hydrodynamic drag force is higher on silicon surface than that on graphite surface, and a measured slip length about 10 nm is obtained on the later surface.
The modified static bending model of microcantilever with monolayer molecules has been established based on energy method, in which the change in neutral layer position caused by adsorption-induced stress has been considered. On this basis, we have analyzed the relationship between the bending curvature radius of a microcantilever with its thickness, Young’s modulus and molecule-molecule distance of adsorbed molecules when it is adsorbed with monolayer water molecules. Additionally, we have investigated the effect of change in neutral layer position on the static behavior of microcantilever sensors and have found that: 1) the bending curvature radius of microcantilever is affected by its Young’s modulus, thickness and distance of adsorbed molecules respectively; 2)the predicted error of bending curvature radius caused by the change in neutral layer position slightly increases with decreasing Young’s modulus and thickness, whereas the effect of distance between adsorbed molecules on the error is significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.