The hippocampal CA3 contributes to spatial working memory (SWM), but which stage of SWM the CA3 neurons act on and whether the lateralization of CA3 function occurs in SWM is also unknown. Here, we reveal increased neural activity in both sample and choice phases of SWM. Left CA3 (LCA3) neurons show higher sensitivity in the choice phase during the correct versus error trials compared with right CA3 (RCA3) neurons. LCA3 initiates firing prior to RCA3 in the choice phase. Optogenetic suppression of pyramidal neurons in LCA3 disrupts SWM only in the choice phase. Furthermore, we discover that parvalbumin (PV) neurons, rather than cholinergic neurons in the medial septum (DB were cholinergic neurons), can project directly to unilateral CA3. Selective suppression of PV neurons in the MS projecting to LCA3 impairs SWM. The findings suggest that MS PV-LCA3 projection plays a crucial role in manipulating the lateralization of LCA3 in the retrieval of SWM.
Parkinson's disease (PD) arises from the loss of dopaminergic neurons in the substantia nigra. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) is well known to cause Parkinsonism in humans with neurotoxicity specific for dopaminergic neurons. The experience with MPTP supports the hypothesis that endogenous or xenobiotic neurotoxins are involved in the pathogenesis of PD in humans. In our study, 1-acetyl-6, 7-dihydroxy-1, 2, 3, 4-tetrahydro-isoquinoline (ADTIQ), a novel compound, was found in frozen human brain tissues. The formation of ADTIQ was demonstrated using dopamine and methylglyoxal under physiological conditions. Methylglyoxal is a by-product of glycolysis. ADTIQ and its precursors, dopamine and methylglyoxal, were detected in different regions of frozen human brains such as the substantia nigra, caudate nucleus, putamen, frontal cortex, and the cerebellum. A significant difference in ADTIQ levels between control and Parkinson's patients was found; for instance, the ADTIQ level in putamen of PD patients was 0.76 ± 0.27 nmol/g compared to 0.10 ± 0.01 nmol/g in control. Our results might indicate that ADTIQ is possibly related to Parkinson's disease.
Astrocytes are the most widespread and heterogeneous glial cells in the central nervous system and key regulators for brain development. They are capable of receiving neurotransmitters produced by synaptic activities and regulating synaptic functions by releasing gliotransmitters as part of the tripartite synapse. In addition to communicating with neurons at synaptic levels, astrocytes can integrate into inhibitory neural networks to interact with neurons in neuronal circuits. Astrocytes are closely related to the pathogenesis and pathological processes of neurodegenerative diseases (NDs). Recently, optogenetics has now been applied to reveal the function of astrocytes in physiology and pathology. Herein, we discuss the possibility whether optogenetics could be used to control the release of gliotransmitters and regulate astrocytic membrane channels. Thus, the capability of modulating the bidirectional interactions between astrocytes and neurons in both synaptic and neuronal networks via optogenetics is evaluated. Furthermore, we discuss that manipulating astrocytes via optogenetics might be an effective way to investigate the potential therapeutic strategy for NDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.