Here, we present a platelet-facilitated photothermal tumor therapy (PLT-PTT) strategy, in which PLTs act as carriers for targeted delivery of photothermal agents to tumor tissues and enhance the PTT effect. Gold nanorods (AuNRs) were first loaded into PLTs by electroporation and the resulting AuNR-loaded PLTs (PLT-AuNRs) inherited long blood circulation and cancer targeting characteristics from PLTs and good photothermal property from AuNRs. Using a gene-knockout mouse model, we demonstrate that the administration of PLT-AuNRs and localizing laser irradiation could effectively inhibit the growth of head and neck squamous cell carcinoma (HNSCC). In addition, we found that the PTT treatment augmented PLT-AuNRs targeting to the tumor sites and in turn, improved the PTT effects in a feedback manner, demonstrating the unique self-reinforcing characteristic of PLT-PTT in cancer therapy.
Graphene is an attractive material for flexible electronics and biosensors, yet its zero bandgap nature has limited the on/off ratio of field-effect transistors (FETs) and the sensitivity of biosensors based on graphene. Graphene nanomesh (GNM), a continuous 2D graphene nanostructure with a high density of holes punched in the basal plane, has been created to introduce lateral confinement and enable improved on/off ratio. However, the GNMs produced to date typically have a relatively large dimension (constriction neck width >5 nm) and low on/off ratio (≈100) limited by the resolution of the lithography process used. Here, the exploration of a directly grown mesoporous silica template is reported for the preparation of ultrafine GNMs with considerably narrower neck width (<3 nm) and strong quantum confinement to enable flexible FETs with greatly improved on/off ratio (up to 1000). With excellent electronic properties and high surface area for the functionalization of specific receptors, it is further shown that the GNM FETs can be readily used to construct highly sensitive biosensors for selective detection of human epidermal growth factor receptor 2, which is further demonstrated for real-time detection of breast cancer cells overexpressed with receptor 2 down to single-cell level. The studies provide a simple and scalable method to GNMs with potential applications for flexible nanoelectronics and biosensors.
This study examined the electrical performance of bilayer channel InGaZnO:H/InGaZnO thin-film transistors (TFTs). The field-effect mobility and bias stress stability of the InGaZnO device were improved by inserting the hydrogenated InGaZnO ultrathin layer compared to the pure InGaZnO single channel layer device. As a consequence, a high field-effect mobility of 55.3 cm2/V s, a high on/off current ratio of 108, a threshold voltage of 0.7 V, and a small sub-threshold swing of 0.18 V/decade have been achieved. The X-ray photoelectron spectroscopy and low-frequency noise analysis suggest that these desirable properties should be attributed to the ultrathin InGaZnO:H layer, which could provide suitable carrier concentration and reduce the average trap density near the channel and insulator layer interface. Meanwhile, the channel conductance of the bilayer device is controlled by thick InGaZnO layer through formation barrier energy for electron transport at the interface of InGaZnO:H and InGaZnO layer. These improved electrical properties have represented a great step towards the achievement of transparent, high performances, and low-cost metal oxide TFTs.
Despite intensive research on improvement in electrical performances of ZnO-based thin-film transistors (TFTs), the instability issues have limited their applications for complementary electronics. Herein, we have investigated the effect of nitrogen and hydrogen (N/H) codoping on the electrical performance and reliability of amorphous InGaZnO (α-IGZO) TFTs. The performance and bias stress stability of α-IGZO device were simultaneously improved by N/H plasma treatment with a high field-effect mobility of 45.3 cm/(V s) and small shifts of threshold voltage (V). On the basis of X-ray photoelectron spectroscopy analysis, the improved electrical performances of α-IGZO TFT should be attributed to the appropriate amount of N/H codoping, which could not only control the V and carrier concentration efficiently, but also passivate the defects such as oxygen vacancy due to the formation of stable Zn-N and N-H bonds. Meanwhile, low-frequency noise analysis indicates that the average trap density near the α-IGZO/SiO interface is reduced by the nitrogen and hydrogen plasma treatment. This method could provide a step toward the development of α-IGZO TFTs for potential applications in next-generation high-definition optoelectronic displays.
Here,w ep resent ap latelet-facilitated photothermal tumor therapy( PLT-PTT) strategy,i nw hich PLTs act as carriers for targeted delivery of photothermal agents to tumor tissues and enhance the PTT effect. Gold nanorods (AuNRs) were first loaded into PLTs by electroporation and the resulting AuNR-loaded PLTs (PLT-AuNRs) inherited long blood circulation and cancer targeting characteristics from PLTs and good photothermal property from AuNRs.U sing ag eneknockout mouse model, we demonstrate that the administration of PLT-AuNRs and localizing laser irradiation could effectively inhibit the growth of head and neck squamous cell carcinoma (HNSCC). In addition, we found that the PTT treatment augmented PLT-AuNRs targeting to the tumor sites and in turn, improved the PTT effects in af eedback manner, demonstrating the unique self-reinforcing characteristic of PLT-PTT in cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.