Background
Remdesivir is widely used for the treatment of coronavirus disease 2019 (COVID-19), but controversies regarding its efficacy still remain.
Methods
A retrospective cohort study was conducted to evaluate the effect of remdesivir on clinical and virologic outcomes of severe COVID-19 patients from June to July 2020. Primary clinical endpoints included clinical recovery, additional mechanical ventilator (MV) support, and duration of oxygen or MV support. Viral load reduction by hospital day (HD) 15 was evaluated by calculating changes in cycle threshold (Ct) values.
Results
A total of 86 severe COVID-19 patients were evaluated including 48 remdesivir-treated patients. Baseline characteristics were not significantly different between the two groups. Remdesivir was administered an average of 7.42 days from symptom onset. The proportions of clinical recovery of the remdesivir and supportive care group at HD 14 (56.3% and 39.5%) and HD 28 (87.5% and 78.9%) were not statistically different. The proportion of patients requiring MV support by HD 28 was significantly lower in the remdesivir group than in the supportive care group (22.9% vs. 44.7%,
P
= 0.032), and MV duration was significantly shorter in the remdesivir group (average, 1.97 vs. 5.37 days;
P
= 0.017). Analysis of upper respiratory tract specimens demonstrated that increases of Ct value from HD 1–5 to 11–15 were significantly greater in the remdesivir group than the supportive care group (average, 10.19 vs. 5.36;
P
= 0.007), and the slope of the Ct value increase was also significantly steeper in the remdesivir group (average, 5.10 vs. 2.68;
P
= 0.007).
Conclusion
The remdesivir group showed clinical and virologic benefit in terms of MV requirement and viral load reduction, supporting remdesivir treatment for severe COVID-19.
Despite the worldwide effect of the Coronavirus disease 2019 (COVID-19) pandemic, the underlying mechanisms of fatal viral pneumonia remain elusive. Here, we show that critical COVID-19 is associated with enhanced eosinophil-mediated inflammation when compared to non-critical cases. In addition, we confirm increased Th2-biased adaptive immune responses, accompanying overt complement activation, in the critical group. Moreover, enhanced antibody responses and complement activation is associated with disease pathogenesis as evidenced by formation of immune complexes and membrane attack complexes in airways and vasculature of lung biopsies from six fatal cases, as well as by enhanced hallmark gene set signatures of FcγR signaling and complement activation in myeloid cells of respiratory specimens from critical COVID-19 patients. These results suggest that SARS-CoV-2 infection may drive specific innate immune responses, including eosinophil-mediated inflammation, and subsequent pulmonary pathogenesis via enhanced Th2-biased immune responses, which might be crucial drivers of critical disease in COVID-19 patients.
Direct electron transfer between a redox label and an electrode requires a short working distance (<1-2 nm), and in general an affinity biosensor based on direct electron transfer requires a finely smoothed Au electrode to support efficient target binding. Here we report that direct electron transfer over a longer working distance is possible between (i) an anionic π-conjugated polyelectrolyte (CPE) label having many redox-active sites and (ii) a readily prepared, thin polymeric monolayer-modified indium-tin oxide electrode. In addition, the long CPE label (∼18 nm for 10 kDa) can approach the electrode within the working distance after sandwich-type target-specific binding, and fast CPE-mediated oxidation of ammonia borane along the entire CPE backbone affords high signal amplification.
We designed a highly sensitive reverse transcription nested polymerase chain reaction targeting the M-segment (NPCR-M) of severe fever with thrombocytopenia syndrome (SFTS) virus. NPCR-M was performed in parallel with three other referenced PCR assays QPCR-S, PCR-M, and NPCR-S to assess their clinical usefulness as routine diagnostic techniques for SFTS. In this multi-centered prospective study, 122 blood samples from 38 laboratory-confirmed SFTS patients and 85 control samples were used. The results demonstrated that QPCR-S and NPCR-S had better sensitivity rate up to 21 days after symptom onset however, the PCR-M showed poor sensitivity after 7 days of symptom onset. Our designed NPCR-M had a higher detection rate up to 40 days from symptom onset and revealed the persistence of SFTSV RNA in the early convalescent phase. No false-positive results were seen for the control samples. Additionally, NPCR-M showed positive results for a sample that initially showed negative results from other PCRs and for many other samples collected in the convalescent phase of SFTS. Our designed nested PCR is suitable for SFTSV detection in patients’ blood collected in the acute and early convalescent phase of SFTS, and shows better sensitivity and high specificity even up to 40 days after symptom onset.
Highlights d The tumor microenvironment increases the activity of PKA-C in macrophages d PKA-Cb specifies pro-tumoral phenotype of macrophages d Macrophages produce pro-tumoral VEGFA, IL-10, and ARG1 via PKA activity d Therapeutic targeting of PKA-C confers anti-tumor T cell responses
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.