In the continuous casting process, the shrinkage of the peritectic phase transition during the initial solidification process has an important influence on the surface quality of peritectic steel. The initial solidification process of 0.10C%, 0.14C%, and 0.16C% peritectic steels was observed in situ by a high temperature laser confocal microscope, and the contraction degree during initial solidification was characterized by surface roughness. The results showed that under the cooling rate of 20 °C/s, the surface roughness value Ra(δ/γ) of 0.10C% peritectic steel was 32 μm, the Ra(δ/γ) value of 0.14C% peritectic steel was 25 μm, and the Ra(δ/γ) value of 0.16C% peritectic steel was 17 μm. With increasing carbon content, the contraction degree of the δ→γ transformation decreased, and the value of the surface roughness Ra(δ/γ) declined. Therefore, surface roughness can characterize the contraction degree of the δ→γ transformation in the initial solidification process of peritectic steel under the condition of a large cooling rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.