In this article, three-dimensional numerical modeling of the laser cladding process by Ansys was proposed. The three-dimensional Gaussian heat source model was used to simulate the actual laser heat source to analyze the temperature distribution of the molten pool. The temperature distribution of the molten pool of TiAlSi + NbC coatings within different process parameters was obtained by simulation. To obtain finer simulation results, the thermophysical properties of TiAlSi + NbC powder and TiAlSi + NbC alloy were investigated, respectively. The temperature selection judgment mechanism, which is used to distinguish the powder and alloy elements, was built. The results showed that the laser power and laser scanning speed play a vital role in the temperature distribution along with the track width and the depth of the molten pool. The simulation values of the width and depth of the cladding layer under different processing parameters were obtained by using the temperature selection judgment mechanism and fitting. The results showed that the track width and depth had a positive correlation with the laser power, whereas they had a negative correlation with the laser scanning speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.