Colloidal lithography is a recently emerging field; the evolution of this simple technique is still in progress. Recent advances in this area have developed a variety of practical routes of colloidal lithography, which have great potential to replace, at least partially, complex and high-cost advanced lithographic techniques. This Review presents the state of the art of colloidal lithography and consists of three main parts, beginning with synthetic routes to monodisperse colloids and their self-assembly with low defect concentrations, which are used as lithographic masks. Then, we will introduce the modification of the colloidal masks using reactive ion etching (RIE), which produces a variety of nanoscopic features and multifaceted particles. Finally, a few prospective applications of colloidal lithography will be discussed.
We report here a novel colloidal lithographic approach to the fabrication of nonspherical colloidal particle arrays with a long-range order by selective reactive ion etching (RIE) of multilayered spherical colloidal particles. First, layered colloidal crystals with different crystal structures (or orientations) were self-organized onto substrates. Then, during the RIE, the upper layer in the colloidal multilayer acted as a mask for the lower layer and the resulting anisotropic etching created nonspherical particle arrays and new patterns. The new patterns have shapes that are different from the original as a result of the relative shadowing of the RIE process by the top layer and the lower layers. The shape and size of the particles and patterns were dependent on the crystal orientation relative to the etchant flow, the number of colloidal layers, and the RIE conditions. The various colloidal patterns can be used as masks for two-dimensional (2-D) nanopatterns. In addition, the resulting nonspherical particles can be used as novel building blocks for colloidal photonic crystals.
Uniform metal nanomesh structures are promising candidates that may replace of indium-tin oxide (ITO) in transparent conducting electrodes (TCEs). However, the durability of the uniform metal mesh has not yet been studied. For this reason, a comparative analysis of the durability of TCEs based on pure Ag and AgNi nanomesh, which are fabricated by using simple transfer printing, is performed. The AgNi nanomesh shows high long-term stability to oxidation, heat, and chemicals compared with that of pure Ag nanomesh. This is because of nickel in the AgNi nanomesh. Furthermore, the AgNi nanomesh shows strong adhesion to a transparent substrate and good stability after repeated bending.
In this paper, we examined the characteristic behavior of localized surface plasmon resonances (LSPR) of Au dot and ring arrays in response to the selective binding of biomolecules. To do this, patterned arrays of Au rings and dots with various feature scales were fabricated over large areas by an imprint lithography technique. Our results showed that the LSPR spectra of the Au nanorings exhibited a blue shift with increase in the ring widths and asymptotically converged to those for Au nanodots. This clearly implies that the LSPR spectra can be tuned over an extended wavelength range by varying the ring width. For an illustrative purpose, the patterned Au structures were used to detect the binding of streptavidin to biotin. In doing this, the Au patterns were chemically modified with G4 dendrimers of amine terminated poly(amidoamine), which facilitated the tethering of biotin onto the Au pattern. Exposure of the biotinylated Au nanorings to aqueous streptavidin solution induced both red-shifts of the LSPR spectra and changes in the peak intensities. The sensitivity of the LSPR spectra to the binding of the biomolecules was enhanced as the ring width of Au rings was decreased.
A general methodology is reported to create organic–inorganic hybrid metal halide perovskite films with enlarged and preferred‐orientation grains. Simply pressing polyurethane stamps with hexagonal nanodot arrays on partially dried perovskite intermediate films can cause pressure‐induced perovskite crystallization. This pressure‐induced crystallization allows to prepare highly efficient perovskite solar cells (PSCs) because the preferred‐orientation and enlarged grains with low‐angle grain boundaries in the perovskite films exhibit suppressed nonradiative recombination. Consequently, the photovoltaic response is dramatically improved by the uniaxial compression in both inverted‐planar PSCs and normal PSCs, leading to power conversion efficiencies of 19.16%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.