The authors discuss temperature-dependent dysprosium (Dy) diffusion and the diffusion-driven Dy-silicate formation process in Dy incorporated HfO2. The Dy-induced dipoles are closely related to the Dy-silicate formation at the high-k/SiO2 interfaces since the VFB shift in Dy2O3 is caused by the dipole and coincides with the Dy-silicate formation. Dipole formation is a thermally activated process, and more dipoles are formed at a higher temperature with a given Dy content. The Dy-silicate related bonding structure at the interface is associated with the strength of the Dy dipole moment and becomes dominant in controlling the VFB/VTH shift during the high temperature annealing in the Dy–Hf–O/SiO2 gate oxide system. Dy-induced dipole reduces the degradation of the electron mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.