The peak level of growth in the vertical dimension of the palpebral fissure was reached between ages 10 and 13 years, that of the intercanthal distance between ages 14 and 16 years, and that of the horizontal dimension of the palpebral fissure between ages 17 and 19 years.
The biodegradable inorganic nanovector based on a layered double hydroxide (LDH) holds great promise for gene and drug delivery systems. However, in vivo targeted delivery of genes through LDH still remains a key challenge in the development of RNA interference therapeutics. Here, we describe in vivo and in vitro delivery system for Survivin siRNA (siSurvivin) assembled with passive LDH with a particle size of 100 nm or active LDH conjugated with a cancer overexpressing receptor targeting ligand, folic acid (LDHFA), conferring them an ability to target the tumor by either EPR-based clathrin-mediated or folate receptor-mediated endocytosis. When not only transfected into KB cells but also injected into xenograft mice, LDHFA/siSurvivin induced potent gene silencing at mRNA and protein levels in vitro, and consequently achieved a 3.0-fold higher suppression of tumor volume than LDH/siSurvivin in vivo. This anti-tumor effect was attributed to a selectively 1.2-fold higher accumulation of siSurvivin in tumor tissue compared with other organs. Targeting to the tumor with inorganic nanovector can guide and accelerate an evolution of next-generation theranosis system.
A chemically well-defined Bio Core@Inorganic Shell nanohybrid, which consists of rationally designed DNA molecule core with a size of ∼100 nm and spherical inorganic nanoshell with an overall thickness of ∼10 nm reassembled with exfoliated layered metal hydroxide (MH nanosheets), is prepared. The DNA encapsulation and its release, due to the pH-dependent solubility of the MH nanoshell, plays a crucial role in maximizing the stability of base sequence-manipulated and probe-functionalized DNA molecules with designed information. The present DNA Core@MH Shell nanohybrid can provide wide bioinspired applications converged with nanotechnology, such as an advanced gene delivery system and a biomedical diagnostics, tracing/collection/sensing system for DNA-based information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.