Nature demonstrates adaptive and extreme shape morphing via unique patterns of movement. Many of them have been explained by monolithic shape-changing mechanisms, such as chemical swelling, skin stretching, origami/kirigami morphing, or geometric eversion, that were successfully mimicked in artificial analogs. However, there still remains an unexplored regime of natural morphing that cannot be reproduced in artificial systems by a “single-mode” morphing mechanism. One example is the “dual-mode” morphing of Eurypharynx pelecanoides (commonly known as the pelican eel), which first unfolds and then inflates its mouth to maximize the probability of engulfing the prey. Here, we introduce pelican eel–inspired dual-morphing architectures that embody quasi-sequential behaviors of origami unfolding and skin stretching in response to fluid pressure. In the proposed system, fluid paths were enclosed and guided by a set of entirely stretchable origami units that imitate the morphing principle of the pelican eel’s stretchable and foldable frames. This geometric and elastomeric design of fluid networks, in which fluid pressure acts in the direction that the whole body deploys first, resulted in a quasi-sequential dual-morphing response. To verify the effectiveness of our design rule, we built an artificial creature mimicking a pelican eel and reproduced biomimetic dual-morphing behavior. By compositing the basic dual-morphing unit cells into conventional origami frames, we demonstrated architectures of soft machines that exhibit deployment-combined adaptive gripping, crawling, and large range of underwater motion. This design principle may provide guidance for designing bioinspired, adaptive, and extreme shape-morphing systems.
A foldable arm is one of the practical applications of folding. It can help mobile robots and unmanned aerial vehicles (UAVs) overcome access issues by allowing them to reach into confined spaces. The origami-inspired design enables a foldable structure to be lightweight, compact, and scalable while maintaining its kinematic behavior. However, the lack of structural stiffness has been a major limitation in the practical use of origami-inspired designs. Resolving this obstacle without losing the inherent advantages of origami is a challenge. We propose a solution by implementing a simple stiffening mechanism that uses an origami principle of perpendicular folding. The simplicity of the stiffening mechanism enables an actuation system to drive shape and stiffness changes with only a single electric motor. Our results show that this design was effective for a foldable arm and allowed a UAV to perform a variety of tasks in a confined space.
A wheel drive mechanism is simple, stable, and efficient, but its mobility in unstructured terrain is seriously limited. Using a deformable wheel is one of the ways to increase the mobility of a wheel drive robot. By changing the radius of its wheels, the robot becomes able to pass over not only high steps but also narrow gaps. In this article, we propose a novel design for a variable-diameter wheel using an origami-based soft robotics design approach. By simply folding a patterned sheet into a wheel shape, a variable-diameter wheel was built without requiring lots of mechanical parts and a complex assembly process. The wheel's diameter can change from 30 to 68 mm, and it is light in weight at about 9.7 g. Although composed of soft materials (fabrics and films), the wheel can bear more than 400 times its weight. The robot was able to change the wheel's radius in response to terrain conditions, allowing it to pass over a 50-mm gap when the wheel is shrunk and a 50-mm step when the wheel is enlarged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.