The single largest risk factor for etiology of neurodegenerative diseases like Alzheimer’s disease is increased age. Therefore, understanding the changes that occur as a result of aging is central to any possible prevention or cure for such conditions. Microglia, the resident brain glial population most associated with both protection of neurons in health and their destruction is disease, could be a significant player in age related changes. Microglia can adopt an aberrant phenotype sometimes referred to either as dystrophic or senescent. While aged microglia have been frequently identified in neurodegenerative diseases such as Alzheimer’s disease, there is no conclusive evidence that proves a causal role. This has been hampered by a lack of models of aged microglia. We have recently generated a model of senescent microglia based on the observation that all dystrophic microglia show iron overload. Iron‐overloading cultured microglia causes them to take on a senescent phenotype and can cause changes in models of neurodegeneration similar to those observed in patients. This review considers how this model could be used to determine the role of senescent microglia in neurodegenerative diseases.
The single greatest risk factor for neurodegenerative diseases is aging. Aging of cells such as microglia in the nervous system has an impact not only on the ability of those cells to function but also on cells they interact with. We have developed a model microglia system that recapitulates the dystrophic/senescent phenotype, and we have combined this with the study of β-amyloid processing. The model is based on the observation that aged microglia have increased iron content. By overloading a human microglial cell line with iron, we were able to change the secretory profile of the microglia. When combining these senescent microglia with SH-SY5Y cells, we noted an increase in extracellular β-amyloid. The increased levels of β-amyloid were due to a decrease in the release of insulin-degrading enzyme by the model senescent microglia. Further analysis revealed that the senescent microglia showed both decreased autophagy and increased ER stress. These studies demonstrate the potential impact of an aging microglial population in terms of β-amyloid produced by neurons, which could play a causal role in diseases like Alzheimer's disease. Our results also further develop the potential utility of an in vitro model of senescent microglia for the study of brain aging and neurodegenerative disease.
Aging is the most prominent risk factor for most neurodegenerative diseases. However, incorporating aging-related changes into models of neurodegeneration rarely occurs. One of the significant changes that occurs in the brain as we age is the shift in phenotype of the resident microglia population to one less able to respond to deleterious changes in the brain. These microglia are termed dystrophic microglia. In order to better model neurodegenerative diseases, we have developed a method to convert microglia into a senescent phenotype in vitro. Mouse microglia grown in high iron concentrations showed many characteristics of dystrophic microglia including, increased iron storage, increased expression of proteins, such as ferritin and the potassium channel, Kv1.3, increased reactive oxygen species production and cytokine release. We have applied this new model to the study of α-synuclein, a protein that is closely associated with a number of neurodegenerative diseases. We have shown that conditioned medium from our model dystrophic microglia increases α-synuclein transcription and expression via tumor necrosis factor alpha (TNFα) and mediated through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The conditioned medium also decreases the formation of α-synuclein tetramers, associated ferrireductase activity, and increases aggregates of α-synuclein. The results suggest that we have developed an interesting new model of aged microglia and that factors, including TNFα released from dystrophic microglia could have a significant influence on the pathogenesis of α-synuclein related diseases.
Abstract:Iron is a trace element of considerable interest to both chemistry and biology. In a biological context its chemistry is vital to the roles it performs. However, that same chemistry can contribute to a more deleterious role in a variety of diseases. The brain is a very sensitive organ due to the irreplaceable nature of neurons. In this regard regulation of brain iron chemistry is essential to maintaining neuronal viability. During the course of normal aging, the brain changes the way it deals with iron and this can contribute to its susceptibility to disease. Additionally, many of the known neurodegenerative diseases have been shown to be influenced by changes in brain iron. This review examines the role of iron in the brain and neurodegenerative diseases and the potential role of changes in brain iron caused by aging.
α-Synuclein (α-syn) is associated with a range of diseases, including Parkinson disease. In disease, α-syn is known to aggregate and has the potential to be neurotoxic. The association between copper and α-syn results in the formation of stellate toxic oligomers that are highly toxic to cultured neurons. We further investigated the mechanism of toxicity of α-syn oligomers. Cells that overexpress α-syn showed increased susceptibility to the toxicity of the oligomers, while those that overexpressed β-syn showed increased resistance to the toxic oligomers. Elevated α-syn expression caused an increase in expression of the transcription factor Forkhead box O3a (FoxO3a). Inhibition of FoxO3a activity by the overexpression of DNA binding domain of FoxO3a resulted in significant protection from α-syn oligomer toxicity. Increased FoxO3a expression in cells was shown to be caused by increased ferrireductase activity and Fe(II) levels. These results suggest that α-syn increases FoxO3a expression as a result of its intrinsic ferrireductase activity. The results also suggest that FoxO3a plays a pivotal role in the toxicity of both Fe(II) and toxic α-syn species to neuronal cells.-Angelova, D. M., Jones, H. B. L., Brown, D. R. Levels of α- and β-synuclein regulate cellular susceptibility to toxicity from α-synuclein oligomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.