The coordination chemistry of 1,1'-diisocyanoferrocene (1) was investigated. Its reaction with Cr(CO)5(THF) (2 equiv) affords (1)[Cr(CO)5]2, which exhibits eclipsed cyclopentadienyl rings with a synclinal arrangement of the two substituents. 1 behaves like an aryl isocyanide in this compound according to IR spectroscopic data, and its oxidation leads to a marked decrease of net electron donor ability. The reaction of 1 with AuCl(SMe2) affords the insoluble coordination polymer [(1)(AuCl)2]infinity. The (1)(AuCl)2 molecules adopt a 3,4-diaura-[6]ferrocenophane structure. They are aggregated in a zipperlike fashion through aurophilic interactions, with Au-Au distances ranging from 3.34 to 3.48 A. The adsorption of 1 from acetonitrile solution on polycrystalline gold affords a self-assembled monolayer. Both isocyanide groups are binding to the surface.
1,1'-Difunctionalised ferrocene derivatives have been studied, which contain groups suitable for chemisorption on gold substrates, namely -NC, -PR(2) as well as a range of sulfur-containing units like -NCS, -SR, and thienyl. Thin films on gold have been fabricated from solution with most of these adsorbate species. Film thickness, composition and structure were investigated primarily by X-ray photoelectron and near-edge X-ray absorption fine-structure spectroscopy. The quality of self-assembled monolayers fabricated from 1,1'-diisocyanoferrocene (1) and 1,1'-diisothiocyanatoferrocene (2) turned out to be superior to that of films based on the other adsorbate species investigated. In addition to the surface coordination behaviour of 1 towards gold substrates, relevant aspects of the molecular coordination chemistry of 1 have also been addressed, including the synthesis and characterisation of [(mu-1){Cr(CO)(5)}(2)], [Ag(2)(mu-1)(2)](NO(3))(2) x H(2)O and [(mu-1)(AuCl)(2)]. The crystal structure of the gold complex is governed by aurophilic interactions and can be taken as a model for the arrangement of 1 in self-assembled monolayers on gold.
Silica and silicates are widely used in nanomedicine with applications as diverse as medical device coatings to replacement materials in tissue engineering. Although much is known about silica and its synthesis, relatively few biomedical scientists fully appreciate the link that exists between its formulation and its resultant structure and function. This article attempts to provide insight into relevant issues in that context, as well as highlighting their importance in the material's eventual surface patterning/activation with alkoxy- and organo-silanes. The use of aminosilanes in that context is discussed at some length to permit an understanding of the specific variables that are important in the reproducible and robust aminoactivation of surfaces using such molecules. Recent investigative work is cited to underline the fact that although aminosilanization is a historically accepted mechanism for surface activation, there is still much to be explained about how and why the process works in the way it does. In the last section of this article, there is a detailed discussion of two classical approaches for the use of aminosilanized materials in the covalent immobilization of bioligands, amino-aldehyde and amino-carboxyl coupling. In the former case, the use of the homobifunctional coupler glutaraldehyde is explored, and in the latter, carbodiimides. Although these chemistries have long been employed in bioconjugations, it is apparent that there are still variables to be explored in the processes (as witnessed by continuing investigations into the chemistries concerned). Aspects regarding optimization, standardization and reproducibility of the fabrication of amino functionalized surfaces are discussed in detail and illustrated with practical examples to aid the reader in their own studies, in terms of considerations to be taken into account when producing such materials. Finally, the article attempts to remind readers that although the chemistry and materials involved are 'old hat', there is still much to be learnt about the methods involved. The article also reminds readers that although many highly specific and costly conjugation chemistries now exist for bioligands, there still remains a place for these relatively simple and cost-effective approaches in bioligand conjugate fabrication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.