Recently the logical entropy was suggested by D. Ellerman (2013) as a new information measure. The present paper deals with studying logical entropy and logical mutual information and their properties in a fuzzy probability space. In particular, chain rules for logical entropy and for logical mutual information of fuzzy partitions are established. Using the concept of logical entropy of fuzzy partition we define the logical entropy of fuzzy dynamical systems. Finally, it is proved that the logical entropy of fuzzy dynamical systems is invariant under isomorphism of fuzzy dynamical systems.
Abstract:In the paper we define three kinds of entropy of a fuzzy dynamical system using different entropies of fuzzy partitions. It is shown that different definitions of the entropy of fuzzy partitions lead to different notions of entropies of fuzzy dynamical systems. The relationships between these entropies are studied and connections with the classical case are mentioned as well. Finally, an analogy of the Kolmogorov-Sinai Theorem on generators is proved for fuzzy dynamical systems.
Abstract:In the paper we propose, using the logical entropy function, a new kind of entropy in product MV-algebras, namely the logical entropy and its conditional version. Fundamental characteristics of these quantities have been shown and subsequently, the results regarding the logical entropy have been used to define the logical mutual information of experiments in the studied case. In addition, we define the logical cross entropy and logical divergence for the examined situation and prove basic properties of the suggested quantities. To illustrate the results, we provide several numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.