Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance.
Senescence is a genetically regulated process that involves decomposition of cellular structures and distribution of the products of this degradation to other plant parts. Reactions involving reactive oxygen species are the intrinsic features of these processes and their role in senescence is suggested. The malfunction of protection against destruction induced by reactive oxygen species could be the starting point of senescence. This article reviews biochemical changes during senescence in relation to reactive oxygen species and changes in antioxidant protection.Additional key words: ageing, enzymatic antioxidants, lipid peroxidation, non-enzymatic antioxidants, oxidative stress.
Congenital disorders of glycosylation comprise a group of genetic defects with a high frequency of intellectual disability, caused by deficient glycosylation of proteins and lipids. The molecular basis of the majority of the congenital disorders of glycosylation type I subtypes, localized in the cytosol and endoplasmic reticulum, has been solved. However, elucidation of causative genes for defective Golgi glycosylation (congenital disorders of glycosylation type II) remains challenging because of a lack of sufficiently specific diagnostic serum methods. In a single patient with intellectual disability, whole-exome sequencing revealed MAN1B1 as congenital disorder of glycosylation type II candidate gene. A novel mass spectrometry method was applied for high-resolution glycoprofiling of intact plasma transferrin. A highly characteristic glycosylation signature was observed with hybrid type N-glycans, in agreement with deficient mannosidase activity. The speed and robustness of the method allowed subsequent screening in a cohort of 100 patients with congenital disorder of glycosylation type II, which revealed the characteristic glycosylation profile of MAN1B1-congenital disorder of glycosylation in 11 additional patients. Abnormal hybrid type N-glycans were also observed in the glycoprofiles of total serum proteins, of enriched immunoglobulins and of alpha1-antitrypsin in variable amounts. Sanger sequencing revealed MAN1B1 mutations in all patients, including severe truncating mutations and amino acid substitutions in the alpha-mannosidase catalytic site. Clinically, this group of patients was characterized by intellectual disability and delayed motor and speech development. In addition, variable dysmorphic features were noted, with truncal obesity and macrocephaly in ∼65% of patients. In summary, MAN1B1 deficiency appeared to be a frequent cause in our cohort of patients with unsolved congenital disorder of glycosylation type II. Our method for analysis of intact transferrin provides a rapid test to detect MAN1B1-deficient patients within congenital disorder of glycosylation type II cohorts and can be used as efficient diagnostic method to identify MAN1B1-deficient patients in intellectual disability cohorts. In addition, it provides a functional confirmation of MAN1B1 mutations as identified by next-generation sequencing in individuals with intellectual disability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.