Immune-checkpoint blockade (ICB) has demonstrated efficacy in many tumor types, but predictors of responsiveness to anti-PD1 ICB are incompletely characterized. In this study, we analyzed a clinically annotated cohort of patients with melanoma (n = 144) treated with anti-PD1 ICB, with whole-exome and whole-transcriptome sequencing of pre-treatment tumors. We found that tumor mutational burden as a predictor of response was confounded by melanoma subtype, whereas multiple novel genomic and transcriptomic features predicted selective response, including features associated with MHC-I and MHC-II antigen presentation. Furthermore, previous anti-CTLA4 ICB exposure was associated with different predictors of response compared to tumors that were naive to ICB, suggesting selective immune effects of previous exposure to anti-CTLA4 ICB. Finally, we developed parsimonious models integrating clinical, genomic and transcriptomic features to predict intrinsic resistance to anti-PD1 ICB in individual tumors, with validation in smaller independent cohorts limited by the availability of comprehensive data. Broadly, we present a framework to discover predictive features and build models of ICB therapeutic response.
Tryptophan catabolism through IDO activity can cause nonresponsiveness and tolerance acting on T cells. Given the crucial importance of dendritic cells (DCs) in the initiation of a T cell response, surprisingly little is known about the impact of IDO activity and tryptophan deprivation on DCs themselves. In the present study, we show that human DCs differentiated under low-tryptophan conditions acquire strong tolerogenic capacity. This effect is associated with a markedly decreased Ag uptake as well as the down-regulation of costimulatory molecules (CD40, CD80). In contrast, the inhibitory receptors ILT3 and ILT4 are significantly increased. Functionally, tryptophan-deprived DCs show a reduced capacity to stimulate T cells, which can be restored by blockade of ILT3. Moreover, ILT3highILT4high DCs lead to the induction of CD4+CD25+ Foxp3+ T regulatory cells with suppressive activity from CD4+CD25− T cells. The generation of ILT3highILT4high DCs with tolerogenic properties by tryptophan deprivation is linked to a stress response pathway mediated by the GCN2 kinase. These results demonstrate that tryptophan degradation establishes a regulatory microenvironment for DCs, enabling these cells to induce T regulatory cells. The impact of IDO thus extends beyond local immune suppression to a systemic control of the immune response.
CpG-rich oligonucleotides (CpG-ODN) bind to Toll-like receptor 9 (TLR9) and are used as powerful adjuvants for vaccination. Here we report that CpG-ODN not only act as immune stimulatory agents but can also induce strong immune suppression depending on the anatomical location of application. In agreement with the adjuvant effect, subcutaneous application of antigen plus CpG-ODN resulted in antigen-specific T cell activation in local lymph nodes. In contrast, systemic application of CpG-ODN resulted in suppression of T cell expansion and CTL activity in the spleen. The suppressive effect was mediated by indoleamine 2,3-dioxygenase (IDO) as indicated by the observation that CpG-ODN induced IDO in the spleen and that T cell suppression could be abrogated by 1-methyl-tryptophan (1-MT), an inhibitor of IDO. No expression of IDO was observed in lymph nodes after injection of CpG-ODN, explaining why suppression was restricted to the spleen. Studies with a set of knockout mice demonstrated that the CpG-ODN-induced immune suppression is dependent on TLR9 stimulation and independent of type I and type II interferons. The present study shows that for the use of CpG-ODN as an adjuvant in vaccines, the route of application is crucial and needs to be considered. In addition, the results indicate that down-modulation of immune responses by CpG-ODN may be possible in certain pathological conditions. See accompanying commentary: http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.