Tryptophan catabolism through IDO activity can cause nonresponsiveness and tolerance acting on T cells. Given the crucial importance of dendritic cells (DCs) in the initiation of a T cell response, surprisingly little is known about the impact of IDO activity and tryptophan deprivation on DCs themselves. In the present study, we show that human DCs differentiated under low-tryptophan conditions acquire strong tolerogenic capacity. This effect is associated with a markedly decreased Ag uptake as well as the down-regulation of costimulatory molecules (CD40, CD80). In contrast, the inhibitory receptors ILT3 and ILT4 are significantly increased. Functionally, tryptophan-deprived DCs show a reduced capacity to stimulate T cells, which can be restored by blockade of ILT3. Moreover, ILT3highILT4high DCs lead to the induction of CD4+CD25+ Foxp3+ T regulatory cells with suppressive activity from CD4+CD25− T cells. The generation of ILT3highILT4high DCs with tolerogenic properties by tryptophan deprivation is linked to a stress response pathway mediated by the GCN2 kinase. These results demonstrate that tryptophan degradation establishes a regulatory microenvironment for DCs, enabling these cells to induce T regulatory cells. The impact of IDO thus extends beyond local immune suppression to a systemic control of the immune response.
Our observations support the hypothesis that lesional type I IFNs produced by pDCs plays an important role in chronic cytotoxic inflammation of LP by recruiting cytotoxic effector lymphocytes via IP10/CXCR3 interactions.
Dendritic cells (DCs) can induce tolerance or immunity. We identified and characterized an IDO-expressing and an IDO-negative human DC population after stimulation by various proinflammatory stimuli. IDO expression was strongly dependent on the maturation status of the cells (CD83-positive cells only). The two DC subpopulations remained IDO positive and IDO negative, respectively, over a time period of at least 48 h. IDO enzyme activity of human DCs was highest during stimulation by strongly maturation-inducing TLR ligands such as highly purified LPS (TLR4 ligand) or polyriboinosinic-polyribocytidilic acid (TLR3 ligand); factors of the adaptive immune system such as IFN-γ, a mixture of cytokines, and IFN-α had lesser stimulatory capacity for IDO induction and activity. After stimulation with CD40L, IDO-positive DCs expressed significantly increased levels of B7 family molecules such as CD40, CD80, CD86, ICOS ligand, as well as PD-L1 (B7-H1) and PD-L2 (B7-DC) compared with the IDO-negative DC subset. At the same time, the inhibitory receptors Ig-like transcripts 3 and 4 were significantly downregulated on IDO-positive cells. Functionally, IDO-positive DCs produced significantly more IL-1β and IL-15 and less IL-10 and IL-6 than the IDO-negative subset after CD40L stimulation. These results show that IDO expression is associated with a distinctive phenotype and functional capacity in mature DCs. It seems likely that the IDO-positive DC subset possesses a regulatory function and might skew a T cell response toward tolerance.
Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) represent the 2 most common types of nonmelanoma skin cancer. Both derive from keratinocytes but show a distinct biological behavior. Here we present transcriptional profiling data of a large cohort of tumor patients (SCC, n 5 42; BCC, n 5 114). Differentially expressed genes reflect known features of SCC and BCC including the typical cytokeratin pattern as well as upregulation of characteristic cell proliferation genes. Additionally, we found increased expression of interferon (IFN)-regulated genes (including IFI27, IFI30, Mx1, IRF1 and CXCL9) in SCC, and to a lower extent in BCC. The expression of IFN-regulated genes correlated with the extent of the lesional immune-cell infiltrate. Immunohistological examinations confirmed the expression of IFN-regulated genes in association with a CXCR31 cytotoxic inflammatory infiltrate on the protein level. Of note, a small subset of SCC samples with low expression of IFN-regulated genes included most organ transplant recipients receiving immunosuppressive medication. Collectively, our findings support the concept that IFN-associated host responses play an important role in tumor immunosurveillance in the skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.