An original method of integration is described for quasi-linear hyperbolic equations in three independent variables. The solution is constructed by means of a step-by-step procedure, employing difference relations along four bicharacteristics and one time-like ordinary curve through each point. From these difference relations the derivatives of the dependent variables at the unknown point are eliminated. The solution at any point can then be computed, with an error proportional to the step size cubed, without referring to conditions outside its domain of dependence. The application of the method to the systems of equations governing unsteady plane motion and steady supersonic flow of an inviscid, non-conducting fluid is discussed in detail. As an example of the use of the method, the flow over a particular delta-shaped body has been computed.
We analyze the positive solutions to the steady-state reaction diffusion equation with Dirichlet boundary conditions of the form:Here, Δu div ∇u is the Laplacian of u, 1/λ is the diffusion coefficient, K and c are positive constants, and Ω ⊂ R N is a smooth bounded region with ∂Ω in C 2 . This model describes the steady states of phosphorus cycling in stratified lakes. Also, it describes the colonization of barren soils in drylands by vegetation. In this paper, we discuss the existence of multiple positive solutions leading to the occurrence of an S-shaped bifurcation curve. We prove our results by the method of subsuper solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.