Since the celebrated discovery of graphene 1,2 , the family of two-dimensional (2D) materials has grown to encompass a broad range of electronic properties. Recent additions include spin-valley coupled semiconductors 3 , Ising superconductors 4-6 that can be tuned into a quantum metal 7 , possible Mott insulators with tunable charge-density waves 8 , and topological semi-metals with edge transport 9,10 . Despite this progress, there is still no 2D crystal with intrinsic magnetism [11][12][13][14][15][16] , which would be useful for many technologies such as sensing, information, and data storage 17 . Theoretically, magnetic order is prohibited in the 2D isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem 18 . However, magnetic anisotropy removes this restriction and enables, for instance, the occurrence of 2D Ising ferromagnetism. Here, we use magneto-optical Kerr effect (MOKE) microscopy to demonstrate that monolayer chromium triiodide (CrI3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 K is only slightly lower than the 61 K of the bulk crystal, consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase transition, showcasing the hallmark thickness-dependent physical properties typical of van der Waals crystals 19-21 . Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect 22 , while in trilayer the interlayer ferromagnetism observed in the bulk crystal is restored. Our work creates opportunities for studying magnetism by harnessing the unique features of atomically-thin materials, such as electrical control for realizing magnetoelectronics 13,23 , and van der Waals engineering for novel interface phenomena 17 . 2 Main Text:Magnetic anisotropy is an important requirement for realizing 2D magnetism. In ultrathin metallic films, an easy-axis can originate from symmetry reduction at the interface/surface, which hinges on substrate properties and interface quality [24][25][26] . In contrast, most van der Waals magnets have an intrinsic magnetocrystalline anisotropy due to the reduced crystal symmetry of their layered structures. This offers the coveted possibility to retain a magnetic ground state in the monolayer limit. In addition to studying magnetism in naturally formed crystals in the true 2D limit, layered magnets provide a platform for studying the thickness dependence of magnetism in isolated single crystals where the interaction with the underlying substrate is weak. Namely, the covalently bonded van der Waals layers prevent complex magnetization reorientations induced by epitaxial lattice reconstruction and strain 23 . For layered materials, these advantages come at a low fabrication cost, since the micromechanical exfoliation technique 27 is much simpler than conventional approaches requiring sputtering or sophisticated molecular beam epitaxy.A variety of layered magnetic compounds have recently drawn increased interest due to the possibility of re...
Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction. Owing to their unique magnetic properties, the recently reported two-dimensional magnets provide a new system for studying these features. For instance, a bilayer of chromium triiodide (CrI) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition. Here, we demonstrate electrostatic gate control of magnetism in CrI bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.
Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI as a function of temperature and applied magnetic field. We electrically detect the magnetic ground state and interlayer coupling and observe a field-induced metamagnetic transition. The metamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI barriers, respectively. We further measure inelastic tunneling spectra for our junctions, unveiling a rich spectrum consistent with collective magnetic excitations (magnons) in CrI.
Bulk chromium tri-iodide (CrI 3 ) has long been known as a layered van der Waals ferromagnet 1 . However, its monolayer form was only recently isolated and confirmed to be a truly two-dimensional (2D) ferromagnet 2 , providing a new platform for investigating light-matter interactions and magnetooptical phenomena in the atomically thin limit. Here, we report spontaneous circularly polarized photoluminescence in monolayer CrI 3 under linearly polarized excitation, with heli city determined by the monolayer magnetization direction. In contrast, the bilayer CrI 3 photoluminescence exhibits vanishing circular polarization, supporting the recently uncovered anomalous antiferromagnetic interlayer coupling in CrI 3 bilayers 2 . Distinct from the Wannier-Mott excitons that dominate the optical response in well-known 2D van der Waals semiconductors 3 , our absorption and layer-dependent photoluminescence measurements reveal the importance of ligandfield and charge-transfer transitions to the optoelectronic response of atomically thin CrI 3 . We attribute the photoluminescence to a parity-forbidden d-d transition characteristic of Cr 3+ complexes, which displays broad linewidth due to strong vibronic coupling and thickness-independent peak energy due to its localized molecular orbital nature.Van der Waals layered materials offer fascinating opportunities for studying light-matter interactions in the 2D limit. For instance, monolayer semiconducting transition metal dichalcogenides (for example, WSe 2 ) enable coupling between the helicity of light and the valley degree of freedom 4 . In all non-metallic 2D materials to date, it has been established that tightly bound Wannier-Mott excitons dominate the intrinsic optical response 3 , and there has been rapid progress in studying 2D excitonic interactions, dynamics and spin/valley physics 3,5 . However, none of these 2D materials possesses long-range magnetic order. A monolayer semiconductor or insulator with intrinsic magnetism would enable the study of novel photo-physical phenomena and the interplay with underlying magnetic order, possibly involving physics incompatible with the Wannier-Mott excitonic picture.On the other hand, the exploration of ferromagnetism in non-metallic bulk materials has a long history. Early studies examined the intrinsic ferromagnetic ordering of a variety of insulating and semiconducting materials, including, for example, the ferrites and ferrospinels 6 , Cr trihalides 7 , Eu chalcogenides 8 and Cr spinels 9 . Later, with the introduction of magnetic dopants into non-magnetic II-VI and III-V semiconductors, diluted magnetic semiconductors captured widespread attention 10 , boosted by the discovery of ferromagnetism in Mn-doped InAs (ref.11 ) and GaAs (ref.1 ) in the 1990s 12 . Central to progress in these fields, optical experiments have led to a deep understanding of electronic structure, magnetization dynamics and interactions between magnetism and light 8,[13][14][15] . While the fascinating physics in the quantum structures of diluted magnet...
The influence of particle shape on plasmonic response and local electric field strength is well-documented in metallic nanoparticles. Morphologies such as rods, plates, and octahedra are readily synthesized and exhibit drastically different extinction spectra than spherical particles. Despite this fact, the influence of composition and shape on the optical properties of plasmonic semiconductor nanocrystals, in which free electrons result from heavy doping, has not been well-studied. Here, we report the first observation of plasmonic resonance in indium-doped cadmium oxide (ICO) nanocrystals, which exhibit the highest quality factors reported for semiconductor nanocrystals. Furthermore, we are able to independently control the shape and free electron concentration in ICO nanocrystals, allowing for the influence of shape on the optical response of a plasmonic semiconductor to be conclusively demonstrated. The highly uniform particles may be self-assembled into ordered single component and binary nanocrystal superlattices, and in thin films, exhibit negative permittivity in the near infrared (NIR) region, validating their use as a new class of tunable low-loss plasmonic building blocks for 3-D optical metamaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.