Poly{[2,5‐bis(3‐sulfonatobutoxy)‐1,4‐phenylene sodium salt]‐alt‐(1,4‐phenylene)}, which is an anionically charged, water‐soluble poly(para‐phenylene) derivative with aldehyde groups at both chain ends, is prepared via the Suzuki coupling reaction in order to develop a FRET energy donor, while simultaneously dual‐fluorescence‐patterning the protein. Regardless of the end‐capping, the synthesized polymer exhibits a good solubility in water with an absorption maximum at 338 nm and a photoluminescence maximum at 417 nm, similar to those of the the end‐capped polymer. The emission spectrum of the polymer overlaps the absorption spectrum of fluorescein, and therefore, the polymer can be used as an energy donor with fluorescein as the energy acceptor in the FRET mechanism. This polymer design not only takes advantage of the introduction of biotin at both chain ends (through a reaction with the aldehyde end groups) to realize the facile interaction with streptavidin, but also brings into play the electrostatic features of the anionic sulfonate groups to fabricate an electrostatic self‐assembly with polycation for the pattern substrate. The micropattern of fluorescein‐labeled streptavidin is fabricated on the polymer‐coated substrate through micro‐contact printing using a polydimethylsiloxane mold. As a result, the polymer substrate exhibits a dual fluorescence micropattern, which results from the blue emission color from the energy donor and the FRET‐amplified green emission from the energy acceptor. The high‐resolution patterning is carried out for the application of multiplexing by simultaneously imaging the patterned green‐emitting fluorescein by FRET and the surrounding blue‐emitting polymer according to an optical detection scheme.
Poly{[2,5‐bis(3‐sulfonatobutoxy)‐1,4‐phenylene sodium salt]‐alt‐(1,4‐phenylene)}, which is an anionically charged, water‐soluble poly(para‐phenylene) derivative with aldehyde groups at both chain ends, is prepared via the Suzuki coupling reaction in order to develop a FRET energy donor, while simultaneously dual‐fluorescence‐patterning the protein. Regardless of the end‐capping, the synthesized polymer exhibits a good solubility in water with an absorption maximum at 338 nm and a photoluminescence maximum at 417 nm, similar to those of the the end‐capped polymer. The emission spectrum of the polymer overlaps the absorption spectrum of fluorescein, and therefore, the polymer can be used as an energy donor with fluorescein as the energy acceptor in the FRET mechanism. This polymer design not only takes advantage of the introduction of biotin at both chain ends (through a reaction with the aldehyde end groups) to realize the facile interaction with streptavidin, but also brings into play the electrostatic features of the anionic sulfonate groups to fabricate an electrostatic self‐assembly with polycation for the pattern substrate. The micropattern of fluorescein‐labeled streptavidin is fabricated on the polymer‐coated substrate through micro‐contact printing using a polydimethylsiloxane mold. As a result, the polymer substrate exhibits a dual fluorescence micropattern, which results from the blue emission color from the energy donor and the FRET‐amplified green emission from the energy acceptor. The high‐resolution patterning is carried out for the application of multiplexing by simultaneously imaging the patterned green‐emitting fluorescein by FRET and the surrounding blue‐emitting polymer according to an optical detection scheme.
We have synthesized APBT and APTBT containing benzothiadiazole units by Suzuki cross-coupling reaction with good yield. The polymers showed blue emission colors in aqueous solutions, while long wavelength shift was observed in the solid state due to facilitated exciton migration. APBT and APTBT are water-soluble and highly-fluorescent conjugated polymers with negatively charged sulfonate side chains and thus they can be electrostatically assembled with oppositely charged polyelectrolyte such as cationic polymer, poly(dimethyldiallylammonium chloride) (PDAC) via layer-by-layer (LbL) deposition technique on a glass slide. According to the increased the number of bilayer, we found that the assembled film exhibited larger enhancement of the long wavelength emission relative to the blue emission, due to the increased excition migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.