Perovskite solar cells prepared via spray-deposition of the active layer have been realized, advancing this promising technology towards roll-to-roll compatible processing methods.
An anionic conjugated polyelectrolyte poly[(9,9-bis(4-sulfonatobutyl sodium) fluorene-altphenylene)-ran-(4,7-di-2-thienyl-2,1,3-benzothiadiazole-alt-phenylene)] which exhibits good solubility in water was synthesised via Suzuki-cross coupling. This conjugated polyelectrolyte was used as an additive in the hole transporting layer within organic photovoltaic devices. There is an efficiency gain as a result of an improved carrier generation and charge transport across the interface into the hole transport layer when the work function of the hole transport later is well matched to the active layer of the solar cell. The best performances were achieved using 5 mg/ml of the polyelectrolyte additive added to the hole transport layer solution in which case the average power conversion efficiency increased from 4.63 % for reference devices without any additive to 5.26 % when the additive is present which is a 13 % improvement. The reproducibility of device performance was also significantly improved with the variation in fill factor, short circuit current and open circuit voltage all improving when the additive is present.
Poly{[2,5‐bis(3‐sulfonatobutoxy)‐1,4‐phenylene sodium salt]‐alt‐(1,4‐phenylene)}, which is an anionically charged, water‐soluble poly(para‐phenylene) derivative with aldehyde groups at both chain ends, is prepared via the Suzuki coupling reaction in order to develop a FRET energy donor, while simultaneously dual‐fluorescence‐patterning the protein. Regardless of the end‐capping, the synthesized polymer exhibits a good solubility in water with an absorption maximum at 338 nm and a photoluminescence maximum at 417 nm, similar to those of the the end‐capped polymer. The emission spectrum of the polymer overlaps the absorption spectrum of fluorescein, and therefore, the polymer can be used as an energy donor with fluorescein as the energy acceptor in the FRET mechanism. This polymer design not only takes advantage of the introduction of biotin at both chain ends (through a reaction with the aldehyde end groups) to realize the facile interaction with streptavidin, but also brings into play the electrostatic features of the anionic sulfonate groups to fabricate an electrostatic self‐assembly with polycation for the pattern substrate. The micropattern of fluorescein‐labeled streptavidin is fabricated on the polymer‐coated substrate through micro‐contact printing using a polydimethylsiloxane mold. As a result, the polymer substrate exhibits a dual fluorescence micropattern, which results from the blue emission color from the energy donor and the FRET‐amplified green emission from the energy acceptor. The high‐resolution patterning is carried out for the application of multiplexing by simultaneously imaging the patterned green‐emitting fluorescein by FRET and the surrounding blue‐emitting polymer according to an optical detection scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.