As one of the cash crops, cotton is facing the threat of abiotic stress during its growth and development. It has been reported that melatonin is involved in plant defense against salt stress, but whether melatonin can improve cotton salt tolerance and its molecular mechanism remain unclear. We investigated the role of melatonin in cotton salt tolerance by silencing melatonin synthesis gene and exogenous melatonin application in upland cotton. In this study, applicating of melatonin can improve salt tolerance of cotton seedlings. The content of endogenous melatonin was different in cotton varieties with different salt tolerance. The inhibition of melatonin biosynthesis related genes and endogenous melatonin content in cotton resulted in the decrease of antioxidant enzyme activity, Ca2+ content and salt tolerance of cotton. To explore the protective mechanism of exogenous melatonin against salt stress by RNA-seq analysis. Melatonin played an important role in the resistance of cotton to salt stress, improved the salt tolerance of cotton by regulating antioxidant enzymes, transcription factors, plant hormones, signal molecules and Ca2+ signal transduction. This study proposed a regulatory network for melatonin to regulate cotton’s response to salt stress, which provided a theoretical basis for improving cotton’s salt tolerance.
bThe influence of land use on soil bio-resources is largely unknown. We examined the communities of arbuscular mycorrhizal (AM) fungi in wheat-growing cropland, natural areas, and seminatural areas along roads. We sampled the Canadian prairie extensively (317 sites) and sampled 20 sites in the Atlantic maritime ecozone for comparison. The proportions of the different AM fungal taxa in the communities found at these sites varied with land use type and ecozones, based on pyrosequencing of 18S rRNA gene (rDNA) amplicons, but the lists of AM fungal taxa obtained from the different land use types and ecozones were very similar. In the prairie, the Glomeraceae family was the most abundant and diverse family of Glomeromycota, followed by the Claroideoglomeraceae, but in the Atlantic maritime ecozone, the Claroideoglomeraceae family was most abundant. In the prairie, species richness and Shannon's diversity index were highest in roadsides, whereas cropland had a higher degree of species richness than roadsides in the Atlantic maritime ecozone. The frequencies of occurrence of the different AM fungal taxa in croplands in the prairie and Atlantic maritime ecozones were highly correlated, but the AM fungal communities in these ecozones had different structures. We conclude that the AM fungal resources of soils are resilient to disturbance and that the richness of AM fungi under cropland management has been maintained, despite evidence of a structural shift imposed by this type of land use. Roadsides in the Canadian prairie are a good repository for the conservation of AM fungal diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.