Chitin and protein-containing marine by-products (CPCMBPs), including crab shells, squid pens, and shrimp shells, were investigated as the sole carbon/nitrogen (C/N) source for prodigiosin (PG) production by Serratia marcescens TNU01 in a 250 mL Erlenmeyer flask and a 10 L bioreactor system. Among the used C/N source of CPCMBPs, squid pens powder (SPP) showed the most optimum PG productivity. Different ratios of chitin/protein combination were also used as the C/N sources for PG production. With a similar chitin/protein ratio (4/6) of squid pens, a significant PG productivity was achieved when the chitin/protein ratios were controlled in the range of 3/7–4/6. Maximum PG yield (3450 mg/L) by S. marcescens TNU01 was achieved in the bioreactor system containing 3 L medium of 1.75% SPP, 0.03% K2HPO4, and 0.05% MgSO4 at 25 °C for 12 h in dark. The results of in vitro bioassays reveal that the purified PG possesses acetylcholinesterase inhibitory activity and antioxidant as well as anticancer activities. This study suggests that squid pens may have the potential to be used for cost effective production of bioactive PG at a large-scale.
This study aimed to establish the culture process for the cost-effective production of prodigiosin (PG) from demineralized crab shell powder (de-CSP), a fishery processing byproduct created via fermentation. Among the tested PG-producing strains, Serratia marcescens TNU02 was demonstrated to be the most active strain. Various ratios of protein/de-CSP were used as the sources of C/N for PG biosynthesis. The PG yield was significantly enhanced when the casein/de-CSP ratio was controlled in the range of 3/7 to 4/6. TNU02 produced PG with a high yield (5100 mg/L) in a 15 L bioreactor system containing 4.5 L of a newly-designed liquid medium containing 1.6% C/N source (protein/de-CSP ratio of 3/7), 0.02% (NH4)2SO4, 0.1% K2HPO4, and an initial pH of 6.15, at 27 °C for 8 h in dark conditions. The red pigment was purified from the culture broth and then quantified as being PG by specific Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and UV spectra analysis. The purified PG demonstrated moderate antioxidant and effective inhibition against four cancerous cell lines. Notably, this study was the first to report on using crab wastes for PG bioproduction with high-level productivity (5100 mg/L) in a large scale (4.5 L per pilot) in a short period of fermentation time (8 h). The salt compositions, including (NH4)2SO4 and K2HPO4, were also a novel finding for the enhancement of PG yield by S. marcescens in this report.
Robusta coffee is a major commercial crop in the Central Highland of Vietnam with high economic and export value. However, this crop is adversely affected by various pathogens, particularly nematodes. This study aimed to screen active anti-nematode rhizobacterial strains for sustainable coffee production. Among more than 200 isolates, the isolate TUN03 demonstrated efficient biocontrol with nearly 100% mortality of J2 coffee nematodes Meloidogyne spp. and 84% inhibition of nematode egg hatching. This active strain was identified as Pseudomonas aeruginosa TUN03 based on its 16S rRNA gene sequence and phylogenetic analysis. In greenhouse tests, the strain TUN03 significantly reduced the coffee nematode population in the rhizome-soil with an 83.23% inhibition rate and showed plant growth-promoting effects. Notably, this is the first report of the nematicidal effect of P. aeruginosa against coffee nematodes. This potent strain further showed an antifungal effect against various crop-pathogenic fungi and was found to be the most effective against Fusarium solani F04 (isolated from coffee roots) with a 70.51% inhibition rate. In addition, high-performance liquid chromatography analysis revealed that this bacterial strain also secretes plant growth regulators including indole acetic acid (IAA), gibberellic acid (GA3), kinetin, and zeatin in significant amounts of 100, 2700, 37, and 9.5 µg/mL, respectively. The data from this study suggest that P. aeruginosa TUN03 may be a potential biocontrol agent and biofertilizer for the sustainable production of Robusta coffee and other crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.