We report the detection of super-hard (>10 keV) X-ray emission extending up to 70 keV from the classical nova V2491 Cygni using the Suzaku observatory. We conducted two ∼20 ks target-ofopportunity observations 9 and 29 days after the outburst on 2008 April 11, yielding wide energy range spectra by combining the X-ray Imaging Spectrometer and the Hard X-ray Detector. On day 9, a spectrum was obtained at 1.0-70 keV with the Fe XXV Kα line feature and a very flat continuum, which is explained by thermal plasma with a 3 keV temperature and power-law emission with a photon index of 0.1 attenuated by a heavy extinction of 1.4×10 23 cm −2 . The 15-70 keV luminosity at 10.5 kpc is 6×10 35 ergs s −1 . The super-hard emission was not present on day 29. This is the highest energy at which X-rays have been detected from a classical nova. We argue a non-thermal origin for the emission, which suggests the presence of accelerated charged particles in the nova explosion.
We describe the highly variable X-ray and UV emission of V458 Vul (Nova Vul 2007), observed by Swift between 1 and 422 days after outburst. Initially bright only in the UV, V458 Vul became a variable hard X-ray source due to optically thin thermal emission at kT = 0.64 keV with an X-ray band unabsorbed luminosity of 2.3 × 10 34 erg s −1 during days 71-140. The X-ray spectrum at this time requires a low Fe abundance (0.2 +0.3 −0.1 solar), consistent with a Suzaku measurement around the same time. On day 315 we find a new X-ray spectral component which can be described by a blackbody with temperature of kT = 23 +9 −5 eV, while the previous hard X-ray component has declined by a factor of 3.8. The spectrum of this soft X-ray component resembles those typically seen in the class of supersoft sources (SSS) which suggests that the nova ejecta were starting to clear and/or that the WD photosphere is shrinking to the point at which its thermal emission reaches into the X-ray band. We find a high degree of variability in the soft component with a flare rising by an order of magnitude in count rate in 0.2 days. In the following observations on days 342.4-383.6, the soft component was not seen, only to emerge again on day 397. The hard component continued to evolve, and we found an anticorrelation between the hard X-ray emission and the UV emission, yielding a Spearman rank probability of 97%. After day 397, the hard component was still present, was variable, and continued to fade at an extremely slow rate but could not be analysed owing to pile up contamination from the bright SSS component.
We report on a second epoch of Chandra X-ray imaging spectroscopy of the spatially-resolved old nova remnant GK Persei. An ACIS-S3 observation of 97.4 ks was conducted in November 2013 after a lapse of 13.8 years from the last visit in 2000. The X-ray emitting nebula appeared more faint and patchy compared with the first epoch. The flux decline was particularly evident in fainter regions and the mean decline was 30-40% in the 0.5-1.2 keV energy band. A typical expansion of the brightest part of the remnant was 1. ′′ 9, which corresponds to an expansion rate of 0. ′′ 14 yr −1 . The soft X-ray spectra extracted from both the 2000 and 2013 data can be explained by a non-equilibrium ionization collisional plasma model convolved with interstellar absorption, though do not allow us to constrain the origin of the flux evolution. The plasma temperature has not significantly evolved since the 2000 epoch and we conclude that the fading of the X-ray emission is due largely to expansion. This implies that recent expansion has been into a lower density medium, a scenario that is qualitatively consistent with the structure of the circumstellar environment photographed soon after the initial explosion more than a century ago. Fainter areas are fading more quickly than brighter areas, indicating that they are fainter because of a lower ambient medium density and consequently more rapid expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.