We have successfully observed two-photon above-threshold ionization in rare gas atoms (Ar, Xe, and He) by the fifth harmonic (25 eV photon energy) of a KrF laser. Use of the energy-resolved photoelectron counting system together with our laser, providing strong 25 eV radiation at 40-100 Hz, enabled us to detect the very weak single-color two-photon above-threshold ionization signals. Experimental data are in good agreement with our theoretical calculations newly developed along the line of multichannel quantum defect theory.
An ultrashort-pulse, mode-locked ytterbium-doped fiber laser has been developed. The group-delay dispersion was compensated with a grating pair inside the cavity. A broad spectrum from 1000-nm to 1120-nm was obtained without intracavity compensation of third-order dispersion. A 0.7-nJ pulse as short as 28.3 fs was obtained with a repetition rate of 80 MHz. To our knowledge, this is the shortest pulse reported from an Yb fiber laser oscillator.
We report on the development of an optical parametric chirpedpulse amplifier at a 1-kHz repetition rate with a 5.5-fs pulse duration, a 2.7-mJ pulse energy and carrier-envelope phase-control. The amplifier is pumped by a 450-nm pulse from a frequency-doubled Ti:sapphire laser.
We demonstrate generation and focusing of 49.7-nm pulses with an average power of 0.1 mW at 200 Hz and with a pulse energy of >1 microJ at 10 Hz by the fifth harmonic of a femtosecond KrF laser. The fifth harmonic is selected and focused with a concave Sc/Si multilayer mirror to a diameter of 2microm, resulting in a peak intensity of 0.5 TW/cm(2), which will make extreme-ultraviolet nonlinear optics feasible. A novel single-shot linear in situ method of spot-size measurement by use of self-trapped exciton luminescence is also demonstrated.
The pulse timing of a mode-locked Er-doped fiber laser was stabilized to a reference pulse train from a Cr:forsterite mode-locked laser by all-optical passive synchronization scheme. The reference pulses were injected into a ring cavity of the fiber laser by using a 1.3-1.5 mum wavelength-division multiplexer. The spectral shift induced by cross-phase modulation between copropagating two-color pulses realizes self-synchronization due to intracavity group-delay dispersion. The rms integration of timing jitter between the fiber laser pulse and the reference pulse was 3.7 fs in a Fourier frequency range from 1 Hz to 100 kHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.