We have measured the wavelength dependence (340-215 nm) of one-photon photoemission from the ground electronic state of solvated electrons in bulk water, methanol, and ethanol. In every case, the vertical electron binding energy (VBE) gradually increased with photon energy, indicating that the photoelectron kinetic energy diminishes as a result of electron-vibration inelastic scattering prior to emission from the liquid surface. In contrast, the VBE of the Rydberg electron in DABCO (1,4-diazabicyclo[2,2,2]octane), which has a surface-excess density, revealed no clear wavelength dependence. These results suggest that the solvated electrons are created predominantly in the bulk and that VBEs measured using UV photoemission spectroscopy of liquids generally require energy corrections to account for inelastic scattering effects. From the wavelength dependence, we have re-estimated the VBEs of solvated electrons in bulk water, methanol, and ethanol to be 3.3, 3.1, and 3.1 eV, respectively. Hydrated electrons were also identified by photoemission spectroscopy using 90 nm radiation.
Ultrafast photoelectron imaging using a 90 nm vacuum-UV probe pulse is applied to the ring-opening reaction of 1,3-cyclohexadiene (CHD) in the gas phase, and formation of 1,3,5-hexatriene (HT) and CHD in their electronic ground states is observed in real time. The analysis of the transient photoelectron kinetic energy spectra reveals the branching ratio into HT and CHD as 3:7 upon 270 nm photoexcitation. The ratio is in reasonable agreement with the experimental values reported for the liquid phase and theoretical values for the gas phase, resolving the discrepancy.
Our crystalline In–Ga–Zn oxide (IGZO) thin film has a c‐axis‐aligned crystal (CAAC) structure and maintains crystallinity even on an amorphous base layer. Although the crystal has c‐axis alignment, its a‐axis and b‐axis have random arrangement; moreover, a clear grain boundary is not observed. We fabricated a back‐channel‐etched thin‐film transistor (TFT) using the CAAC‐IGZO film. Using the CAAC‐IGZO film, more stable TFT characteristics, even with a short channel length, can be obtained, and the instability of the back channel, which is one of the biggest problems of IGZO TFTs, is solved. As a result, we improved the process of manufacturing back‐channel‐etched TFTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.