Background: An optical plankton counter (OPC) was used to examine spatial and temporal changes in the zooplankton size spectra in the neighboring waters of Japan from May to August 2011. Results: Based on the zooplankton biovolume of equivalent spherical diameter (ESD) in 45 bins for every 0.1 mm between 0.5 and 5.0 mm, a Bray-Curtis cluster analysis classified the zooplankton communities into six groups. The geographical distribution of each group varied from each of the others. Groups with a dominance of 4 to 5 mm ESD were observed in northern marginal seas (northern Japan Sea and Okhotsk Sea), while the least biovolume with a dominance of a small-size class (0.5 to 1 mm) was observed for the Kuroshio extension. Temporal changes were observed along the 155°E line, i.e., a high biovolume group dominated by 2 to 3 mm ESD during May shifted to other size spectra groups during July to August. These temporal changes were caused by the seasonal vertical descent of dominant large Neocalanus copepods during July to August. As a specific characteristic of the normalized biomass size spectra (NBSS), the slope of NBSS was moderate (−0.90) for the Neocalanus dominant spring group but was at −1.11 to −1.24 for the other groups. Theoretically, the slope of the NBSS of the stable marine ecosystem is known to settle at approximately −1. Conclusions: Based on the analysis by OPC, zooplankton size spectra in the neighboring waters of Japan were separated into six groups. Most groups had −1.11 to −1.24 NBSS slopes, which were slightly higher than the theoretical value (−1). However, one group had a moderate slope of NBSS (−0.90) caused by the dominance of large Neocalanus copepods.
To evaluate the temporal changes in zooplankton size spectra, optical plankton counter (OPC) measurements were made of high-frequency time-series zooplankton samples collected at approximately 3.5-day intervals in Mombetsu Harbour, which is located in the southern Okhotsk Sea, from January to December 2011. Based on biomasses of 47 equivalent spherical diameter (ESD) size classes binned at 0.1 mm intervals across 0.35-5 mm, the Bray-Curtis similarity index separated the zooplankton community into six groups (A-F). The occurrence of each group was separated seasonally. Thus, groups A and B were observed during the ice-covered season and summer season, respectively. During March and June, groups C-F were observed. Their occurrence varied in the short term in relation to the exchange of water masses. Groups A and C, which were observed from January to April, showed flatter normalized biomass size spectra (NBSS) slopes (-0.85-1.1), which indicate low productivity. In contrast, the other groups showed steeper slopes (-1.31-1.52) from May to December, with high productivity. Throughout the year, the frequency of highly productive groups occurred at a high level (95.2%). Although the seasonal variability in zooplankton size and productivity in Mombetsu Harbour was mainly governed by water 3 mass exchanges, the productivity was continuously high throughout nearly all of the 31 one-year study period.
Seasonal changes in body size (prosome length: PL) and oil sac volume (OSV) of the three most numerically abundant copepods in Ishikari Bay, northern Sea of Japan, Paracalanus parvus (Claus, 1863), Pseudocalanus newmani (Frost, 1989) and Oithona similis (Claus, 1866), were studied using monthly samples collected through vertical hauls of a 100-μm mesh NORPAC net from March, 2001 to May, 2002. Seasonal changes in PL were common for the three species and were more pronounced during a cold spring. PL was negatively correlated with temperature, and this relationship was described well using the Bělehrádek equation. Seasonal changes in OSV exhibited a species-specific pattern: i.e., OSV was greater during a warm summer for P. parvus and was greater during a cold spring for P. newmani and O. similis. The OSV peak period corresponded with the optimal thermal season of each species. The relative OSV to prosome volume of the small copepods (0.6-0.8%) was substantially lower than that of the large copepods (20-32%). These facts suggest that the oil sac of small copepods is not used for overwintering or diapauses or during periods of food scarcity but is instead used as the primary energy source for reproduction, which occurs during the optimum thermal season of each species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.