Neurotrophin-3 (NT-3), a neurotrophin member, plays crucial roles in neuronal development, function and plasticity. Previous studies have demonstrated that NT-3 gene transcription is driven by alternative promoters A and B, located upstream of exons 1A (EIA) and 1B (EIB), respectively. However, the transcription factors and DNA elements that drive NT-3 gene transcription remain to be identified. Here, we analysed the promoter region of the NT-3 gene and found that an NT-3 transcript containing EIB is predominantly expressed in cortical neurons which preferentially utilize promoter B, and two tandemly repeated GC-boxes, located between )100 and )60 base pairs within promoter B, are required for the transcription.Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that both specificity protein (Sp)3 and Sp4 were able to bind to the Sp1 binding sequences within the GC boxes. Expression of dominant-negative Sp3 and Sp4 small interfering RNA in cortical neurons reduced the activity of the NT-3 gene promoter. Over-expression of Sp1 family members, especially Sp4, resulted in an increase of the NT-3 gene promoter. These findings indicate that the NT-3 gene is a target gene for Sp4 that is abundantly expressed in the brain.
The mRNA expression of brain-derived neurotrophic factor (BDNF) is controlled in an activity-dependent manner through Ca 2ϩ influx into neurons. Pyrethroids are widely used insecticides of low acute toxicity in mammals, but their effects on sodium channels are known to lead to hyperexcitation in neuronal cells of insects. In this study, we found that deltamethrin, a type II pyrethroid insecticide, was highly effective in inducing BDNF expression in culture and in the rat brain. Addition of deltamethrin to rat cortical cells in culture markedly increased the expression of BDNF exon III-V mRNA and protein, dependent upon the neuronal activity accompanying the influx of Ca 2ϩ into neurons and the Ca 2ϩ influx-dependent phosphorylation of extracellular signal-regulated kinases 1/2. The elevated expression was maintained for at least 48 h, even after deltamethrin was withdrawn from the culture medium. Comparison of the effects of selected pyrethroids on the expression revealed that type II but not type I pyrethroids effectively induced BDNF mRNA expression. In addition, administration of deltamethrin to rats increased the level of BDNF protein in the cerebral cortex and hippocampus. These results indicate that deltamethrin is a potent inducer of BDNF expression in neurons and that it may induce neuronal hyperexcitation if it reaches the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.