A key property for the design of new shape memory alloys is their working temperature range that depends on their transformation temperature T0. In previous works, T0 was predicted using a simple linear regression with respect to the energy difference between the parent and the martensitic phases, [Formula: see text]E[Formula: see text]. In this paper, we developed an accurate method to predict T0 based on machine learning assisted by the first-principles calculations. First-principles calculations were performed on 15 shape memory alloys; then, we proposed an artificial neural network method that used not only computed [Formula: see text]E[Formula: see text] but also bulk moduli as input variables to predict T0. The prediction error of T0 was improved to 49 K for the proposed artificial neural network compared with 188 K for simple linear regression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.