In this work, micro-compression tests are performed at various temperatures with Ti-27Nb (at.%) single crystalline pillars to investigate anisotropic deformation behavior, including the shape memory effect. In non-tapered single-crystal pillars with loading directions parallel to [001], [011], and [111], transformation strain and stress show orientation dependence. [001]-oriented micropillars with aspect ratios of 2 and 1.5 demonstrate temperature-dependent transformation stress during micro-compression at various temperatures. Although more stress is required to induce martensite transformation in the pillar with the lower aspect ratio, the temperature dependence of ~1.8 MPa/K observed in both pillars is in good agreement with that of bulk Ti-27Nb.
Austenitic materials with high sensitization resistance and high temperature strength are required for furnace and reaction tower of desulfurizing plants in the petroleum refinery industry. For these requirements, a new steel (LowC-18Cr-11Ni-3Cu-Mo-Nb-B-N) has been developed. The steel shows no intergranular stress corrosion cracking in polythionic acid environment after aging in the temperature range from 565 to 700 °C for up to 10,000 hours. This excellent PTA-SCC resistance is attributed to the prevention of M23C6 carbide precipitation along grain boundary due to extra low carbon content with high ratio of niobium to carbon. The maximum allowable tensile stress of this steel is estimated to be more than 30% higher than that of ASME SA213 Type347H. This excellent strength is based on the precipitation strengthening effect due to fine precipitates of a copper rich phase which are coherent with the austenite matrix in addition to Z-phase (NbCrN). Moreover, boron addition improves creep strength and creep ductility of the steel.
From these results, it is concluded that the newly developed steel is a promising material not only for refinery processes but also for other elevated temperature usages.
In petroleum refinery plants, materials with high sensitization resistance are required. 347AP has particularly been developed for such applications and shows good sensitization resistance owing to its low C content. However, further improvement in high temperature strength is required for high temperature operations in complex refineries, such as delayed cokers. Recently, a new austenitic stainless steel (low C 18Cr-11Ni-3Cu-Mo-Nb-B-N, UNS No. S34752) with high sensitization resistance and high strength at elevated temperatures has been developed. In this study, the mechanical properties and microstructures of several aged specimens will be reported. By conducting several aging heat treatments in the range of 550–750 °C for 300–10,000 h on the developed steel, it was revealed that there were only few coarse precipitates that assumed sigma phase even after aging at 750 °C for 10,000 h. This indicates that the newly developed steel has superior phase stability. The developed steel drastically increased its Vickers hardness by short-term aging treatments. Through transmission electron microscopy observations, the fine precipitates of Cu-rich phase were observed dispersedly in the ruptured specimen. Therefore, the increase in Vickers hardness in short-term aging is possibly owing to the dispersed precipitation of Cu-rich phase. There was further increase in Vickers hardness owing to Z phase precipitation; however, the increment was smaller than that caused by Cu-rich phase. The newly developed alloy demonstrated excellent creep rupture strength even in the long-term tests of approximately 30,000 h, which is attributed to these precipitates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.