We demonstrated low‐resistive GaInN‐based tunnel junctions with high In mole fractions (over 0.35) grown by metalorganic vapor phase epitaxy (MOVPE). A 2 nm heavily Mg‐doped Ga0.6In0.4N/15 nm heavily Si‐doped GaN tunnel junction was grown on a standard‐sized (310 × 310 µm2) LED. The tunnel junction showed 0.06 V drop at 20 mA (26 A/cm2), corresponding to 4 × 10−3 Ωcm2 as the resistivity. This result indicates that MOVPE‐grown tunnel junctions showed an almost comparable resistivity as conventional p‐contact. We also found that the tunnel junction resistivity is decreased to 4 × 10−4 Ω cm2 with an increase of current density up to 5 kA/cm2. A tunneling through midgap states was suggested from forward‐biased I–V characteristics of transmission line model test structures with the tunnel junctions.
We fabricated nitride-based micro-LED arrays with a small number of fabrication process steps by using a combination of tunnel junctions and patterned n-GaN cathode lines. A use of the combination enables us to skip a couple of process steps required in standard LED array fabrication. A 10 × 10 channel matrix-addressable LED array with a 10 × 16 µm2 emission regions and a 25 µm pitch lengths showed uniform operating voltages and light output intensities, indicating good yield due to the small number of process steps used. In addition, microdisplay of over 1000 (14 × 72) channels was successfully demonstrated. The new array structure with the tunnel junction and n-GaN cathode line provides a high density and a high yield simultaneously.
We have investigated two approaches for an alternative hole injection with a tunnel junction targeting deep UV-LEDs. One was an AlGaN-based tunnel junction. We fabricated the AlGaN-based tunnel junctions with various AlN mole fractions (0~0.2) grown on conventional blue-LEDs by MOVPE. A 7.5 nm heavily Mg-doped GaN/15 nm heavily Si-doped Al0.2Ga0.8N tunnel junction showed a large voltage drop, 5.31 V at 20 mA, under reverse bias. The other was a GaInN-based tunnel junction. We prepared Ga0.6In0.4N tunnel junctions with various thicknesses and Si doping levels grown on the blue LEDs by MOVPE. A 2 nm heavily Mg-doped Ga0.6In0.4N/3 nm heavily Si-doped GaN tunnel junction showed only 0.12 V drop at 20mA under reverse bias. Since an absorption of the thin GaInN tunnel junction was estimated to be less than 10 %, such a tunnel junction with small bandgap and thin layer thickness is a practical approach to obtain a low resistive and low absorptive hole injection in the deep UV-LEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.