Background In aquatic ecosystems, the health and performance of fish depend greatly on the dynamics of microbial community structure in the background environment. Nonetheless, finding microbes with profound impacts on fish’s performance out of thousands of candidate species remains a major challenge. Methods We examined whether time-series analyses of microbial population dynamics could illuminate core components and structure of fish-associated microbiomes in the background (environmental) water. By targeting eel-aquaculture-tank microbiomes as model systems, we reconstructed the population dynamics of the 9605 bacterial and 303 archaeal species/strains across 128 days. Results Due to the remarkable increase/decrease of constituent microbial population densities, the taxonomic compositions of the microbiome changed drastically through time. We then found that some specific microbial taxa showed a positive relationship with eels’ activity levels even after excluding confounding effects of environmental parameters (pH and dissolved oxygen level) on population dynamics. In particular, a vitamin-B12-producing bacteria, Cetobacterium somerae, consistently showed strong positive associations with eels’ activity levels across the replicate time series of the five aquaculture tanks analyzed. Network theoretical and metabolic modeling analyses further suggested that the highlighted bacterium and some other closely-associated bacteria formed “core microbiomes” with potentially positive impacts on eels. Conclusions Overall, these results suggest that the integration of microbiology, ecological theory, and network science allows us to explore core species and interactions embedded within complex dynamics of fish-associated microbiomes.
In aquatic ecosystems, the health of fish depends greatly on the dynamics of microbial community structure in the background environment. Nonetheless, finding microbes with profound impacts on fish's performance out of thousands of candidate species remains a major challenge. We here show that time-series analyses of microbial population dynamics illuminate core components and structure of fish-associated microbiomes. By targeting eel aquaculture microbiomes as model systems, we reconstructed the population dynamics of 9,605 bacterial and 303 archaeal species/strains across 128 days. Due to the remarkable increase/decrease of constituent microbial populations, the taxonomic compositions of microbiomes changed drastically through time. We then found that some specific microbial taxa showed positive relationship with eels activity level even after excluding cofounding effects of environmental parameters (pH and dissolved oxygen level) on population dynamics. In particular, a vitamin B12-producing bacteria, Cetobacterium somerae, consistently showed strong positive associations with eels activity level across the replicate time-series of the five aquaculture tanks. Network theoretical and metabolic modeling analyses further suggested that the highlighted bacterium formed compartments of close microbe-to-microbe interactions with some other bacterial taxa, forming potential core microbiomes with positive impacts on eels. Overall, these results suggest that integration of microbiology, ecological theory, and network science allows us to explore core species and interactions embedded within complex dynamics of fish-associated microbiomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.