Microbiome dynamics are both crucial indicators and drivers of human health, agricultural output, and industrial bio-applications. However, predicting microbiome dynamics is notoriously difficult because communities often show abrupt structural changes, such as dysbiosis in human microbiomes. We here integrate theoretical and empirical bases for anticipating drastic shifts of microbial communities. We monitored 48 experimental microbiomes for 110 days and observed that various community-level events, including collapse and gradual compositional changes, occurred according to a defined set of environmental conditions. We then confirmed that the abrupt community changes observed through the time-series could be described as shifts between alternative stable states or dynamics around complex attractors. Furthermore, collapses of microbiome structure were successfully anticipated by means of the diagnostic threshold defined with the energy landscape analysis of statistical physics or that of a stability index of nonlinear mechanics. These results indicate that abrupt microbiome events in complex microbial communities can be forecasted by extending classic ecological concepts to the scale of species-rich microbial systems.
Background Microbiome dynamics are both crucial indicators and potential drivers of human health, agricultural output, and industrial bio-applications. However, predicting microbiome dynamics is notoriously difficult because communities often show abrupt structural changes, such as “dysbiosis” in human microbiomes. Methods We integrated theoretical frameworks and empirical analyses with the aim of anticipating drastic shifts of microbial communities. We monitored 48 experimental microbiomes for 110 days and observed that various community-level events, including collapse and gradual compositional changes, occurred according to a defined set of environmental conditions. We analyzed the time-series data based on statistical physics and non-linear mechanics to describe the characteristics of the microbiome dynamics and to examine the predictability of major shifts in microbial community structure. Results We confirmed that the abrupt community changes observed through the time-series could be described as shifts between “alternative stable states“ or dynamics around complex attractors. Furthermore, collapses of microbiome structure were successfully anticipated by means of the diagnostic threshold defined with the “energy landscape” analysis of statistical physics or that of a stability index of nonlinear mechanics. Conclusions The results indicate that abrupt microbiome events in complex microbial communities can be forecasted by extending classic ecological concepts to the scale of species-rich microbial systems.
Species utilizing the same resources ultimately do not coexist for long periods of time. Such competitive exclusion mechanisms potentially underly dynamics of microbiomes, causing breakdowns of communities constituted by species with similar genetic backgrounds of resource use. Nonetheless, it remains a major challenge to integrate genomics and ecology for understanding deterministic processes of species coexistence in species-rich communities. We here show that community-scale analyses of functional gene redundancy provide statistical platforms for interpreting and predicting collapse of bacterial communities. Through 110-day time-series of experimental microbiome dynamics, we analyzed the metagenome-assembled genomes of coexisting bacterial species. We then reconstructed ecological niche space based on the multivariate analysis of the genome compositions in order to evaluate potential shifts in the level of niche overlap between species through time. Specifically, we hypothesized that community-scale pressure of competitive exclusion could be evaluated by quantifying overlap of genetically determined resource-use profiles (metabolic pathway profiles) among coexisting species. We found that the degree of community compositional changes observed in the experimental microbiome was explained by the magnitude of metabolic pathway (gene repertoire) overlaps among bacterial species. The metagenome-based analysis of genetic potential for competitive exclusion will help us forecast major events in microbiome dynamics such as sudden community collapse (i.e., dysbiosis).
Facilitative interactions between microbial species are ubiquitous in various types of ecosystems on the Earth. Therefore, inferring how entangled webs of interspecific interactions shift through time in microbial ecosystems is an essential step for understanding ecological processes driving microbiome dynamics. By compiling shotgun metagenomic sequencing data of an experimental microbial community, we examined how the architectural features of facilitative interaction networks could change through time. A metabolic modeling approach for estimating dependence between microbial genomes (species) allowed us to infer the network structure of potential facilitative interactions at 13 time points through the 110-day monitoring of experimental microbiomes. We then found that positive feedback loops, which were theoretically predicted to promote cascade breakdown of ecological communities, existed within the inferred networks of metabolic interactions prior to the drastic community-compositional shift observed in the microbiome time-series. We further applied “directed-graph” analyses to pinpoint potential keystone species located at the “upper stream” positions of such feedback loops. These analyses on facilitative interactions will help us understand key mechanisms causing catastrophic shifts in microbial community structure.
Background In aquatic ecosystems, the health and performance of fish depend greatly on the dynamics of microbial community structure in the background environment. Nonetheless, finding microbes with profound impacts on fish’s performance out of thousands of candidate species remains a major challenge. Methods We examined whether time-series analyses of microbial population dynamics could illuminate core components and structure of fish-associated microbiomes in the background (environmental) water. By targeting eel-aquaculture-tank microbiomes as model systems, we reconstructed the population dynamics of the 9605 bacterial and 303 archaeal species/strains across 128 days. Results Due to the remarkable increase/decrease of constituent microbial population densities, the taxonomic compositions of the microbiome changed drastically through time. We then found that some specific microbial taxa showed a positive relationship with eels’ activity levels even after excluding confounding effects of environmental parameters (pH and dissolved oxygen level) on population dynamics. In particular, a vitamin-B12-producing bacteria, Cetobacterium somerae, consistently showed strong positive associations with eels’ activity levels across the replicate time series of the five aquaculture tanks analyzed. Network theoretical and metabolic modeling analyses further suggested that the highlighted bacterium and some other closely-associated bacteria formed “core microbiomes” with potentially positive impacts on eels. Conclusions Overall, these results suggest that the integration of microbiology, ecological theory, and network science allows us to explore core species and interactions embedded within complex dynamics of fish-associated microbiomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.