Melanin in the epidermis determines the wide variation in skin color associated with ethnic skin diversity. Ethnic differences exist regarding melanosome loss in keratinocytes, but the mechanisms underlying these differences, and their contribution to the regulation of skin color, remain unclear. Here, we explored the involvement of autophagy in determining skin color by regulating melanosome degradation in keratinocytes. Keratinocytes derived from Caucasian skin exhibit higher autophagic activity than those derived from African American (AA) skin. Furthermore, along with the higher autophagy activity in Caucasian skin-derived keratinocytes compared with AA skin-derived keratinocytes, Caucasian skin-derived keratinocytes were more sensitive to melanosome treatment as shown by their enhanced autophagic activity, which may reflect the substantial mechanisms in the human epidermis owing to the limitations of the models. Melanosome accumulation in keratinocytes was accelerated by treatment with lysosomal inhibitors or with small interfering RNAs specific for autophagy-related proteins, which are essential for autophagy. Furthermore, consistent with the alterations in skin appearance, the melanin levels in human skin cultured ex vivo and in human skin substitutes in vitro were substantially diminished by activators of autophagy and enhanced by the inhibitors. Taken together, our data reveal that autophagy has a pivotal role in skin color determination by regulating melanosome degradation in keratinocytes, and thereby contributes to the ethnic diversity of skin color.
Hyperpigmentation of the skin is characterized by increases in melanin synthesis and deposition. Although considered a significant psychosocial distress, little is known about the detailed mechanisms of hyperpigmentation. Recently, the tumor suppressor protein p53 has been demonstrated to promote ultraviolet B-induced skin pigmentation by stimulating the transcription of a melanogenic cytokine, POMC (pro-opiomelanocortin), in keratinocytes. Given that p53 can be activated by various kinds of diverse stresses, including sun exposure, inflammation, and aging, this finding led us to examine the involvement of p53 in cytokine receptor signaling, which might result in skin hyperpigmentation. Immunohistochemical and reverse transcription-PCR analyses revealed the increased expression and phosphorylation of p53 in the epidermis of hyperpigmented spots, accompanied by the higher expression of melanogenic cytokines, including stem cell factor, endothelin-1, and POMC. The involvement of p53 in hyperpigmentation was also indicated by the significantly higher expression of p53 transcriptional targets in the epidermis of hyperpigmented spots. Treatment of human keratinocytes and melanocytes with known p53 activators or inhibitors, including pifithrin-␣ (PFT), demonstrated significant increases or decreases, respectively, in the expression of melanogenic factors, including cytokines and their receptors. Additionally, PFT administration abolished stem cell factor-induced phosphorylation of mitogen-activated protein kinase in human melanocytes. Furthermore, when organ-cultured hyperpigmented spots, in vitro human skin substitutes, and mouse skin were treated with PFT or p53 small interfering RNA, the expression of melanogenic cytokines and their receptors was significantly decreased, as were levels of tyrosinase and melanogenesis. Taken together, these data reveal the essential role of p53 in hyperpigmentation of the skin via the regulation of paracrine-cytokine signaling, both in keratinocytes and in melanocytes.There are various types of hyperpigmentations (pigmented spots) of the skin characterized by increases in melanin synthesis and deposition, such as freckles, postinflammatory hyperpigmentation, UV-induced pigmentation (UV-melanoses), senile lentigines (age spots), pigmentation petaloides actinica, and melasma. These hyperpigmentations are well known to cause significant psychosocial distress, but little is known about their detailed mechanisms.Hyperpigmentation generally results from three major steps in the epidermis: the proliferation of melanocytes, the synthesis and activation of tyrosinase to produce melanin, and the transfer of melanosomes to keratinocytes (1-4). During the first two steps, a complicated network composed of paracrine and autocrine cytokines secreted by keratinocytes and by melanocytes, respectively, plays an important role in regulating melanogenesis in collaboration with their corresponding receptors, whose expression is also regulated by various cytokines (5-23). In addition, several types of c...
BackgroundObesity is considered problematic not only as a major cause of diabetes, hypertension, and dyslipidemia, but also as a risk of intractable dermatosis; however influence of obesity on skin function has not been clarified. To clarify the mechanism of obesity-associated skin disorders, we aimed to characterize the skin function of subjects with obesity, and identify possible influencing factors.MethodsComplex analyses including instrumental measurement, biochemical and lipidomics were performed for facial skin and physical evaluation in 93 Caucasian women with obesity (OB) and non-obesity (NOB).ResultsIn OB, imbalance in metabolism of carbohydrate and lipid, autonomic nerve activity, and secreted factors were confirmed. In the skin properties in OB, surface roughness was higher by 70%, the water content was lower by 12%, and changes in the lipid profile of stratum corneum ceramide were observed; in particular, a 7% reduction of [NP]-type ceramide, compared with NOB. Moreover, significant redness accompanied by a 34% increase in skin blood flow was observed in OB. Correlation analysis elucidated that the water content was strongly correlated with local skin indices, such as the ceramide composition, redness, blood flow, and TNFα in the stratum corneum, whereas roughness was correlated with the systemic indices, such as serum insulin, leptin, and IL-6.ConclusionsCharacteristics of obesity-associated skin were (A) reduction of the barrier and moisturizing function accompanied by intercellular lipid imbalance, (B) increased redness accompanied by hemodynamic changes, and (C) surface roughness. It was suggested that each symptom is due to different causes in local and/or systemic physiological impairment related to the autonomic nerve-vascular system, inflammation and insulin resistance.Electronic supplementary materialThe online version of this article (10.1186/s12944-017-0608-1) contains supplementary material, which is available to authorized users.
The content and distribution of melanin in the epidermis determines the wide variety of skin colors associated with ethnic/racial diversity. Although it was previously reported that qualitative changes in keratinocyte‐derived exosomes regulate melanocyte pigmentation in vitro, their practical involvement, especially in skin color development in vivo, has remained unclear. To address this unexplained scientific concern, the correlation of epidermal exosomes isolated from human skin tissues with melanosomal protein expression levels was demonstrated in this study for the first time. After confirming the quantitative effect of human keratinocyte‐derived exosomes on human melanocyte activation, even in the absence of ultraviolet B (UV‐B) exposure, the impact of exosomes secreted from UV‐B‐irradiated keratinocytes on melanogenesis was consistently detected, which suggests their constitutive role in regulating cutaneous pigmentation. Additionally, both a specific exosome secretion inducer and a suppressor were consistently found to significantly control melanin synthesis in a co‐culture system composed of keratinocytes and melanocytes as well as in an ex vivo skin culture system. These results suggest that quantitative changes, in addition to already known qualitative changes, in exosomes secreted from human epidermal keratinocytes homeostatically regulate melanogenic activity in a paracrine manner, which leads to skin color determination.
We characterized three-dimensional human hepatoma cell lines, functional liver cell (FLC) cell lines, to establish a highly differentiated hepatoma cell line. We investigated the effect of extracellular matrix and cell morphology on liver-specific gene expression in FLC cells. The hepatocyte nuclear factor-4α (HNF-4α) and other liver-specific gene expressions were enhanced in spherical FLC-4 cells on EHS-gel, but other human hepatoma cells such as HepG2 did not show the enhancement. Importantly, the liver-specific gene expression levels in spherical FLC-4 cells cultured on EHS-gel were comparable to those of human liver and were much higher than those of other human hepatoma cell lines. The major matrix components and growth factors in EHS-gel did not affect cell shape and liver functions. To exclude any effect of the extracellular matrix, we made spherical FLC-4 cells by actin filament disruption. The actin-disrupted spherical cells also showed an enhanced liver-specific gene expression. We concluded that three-dimensional cell shape per se is one of the most important determinants of liver differentiation functions in FLC-4 cells. Cell morphology-dependent induction of liver-specific gene expression was mediated through microtubule organization. In conclusion, differentiation of FLC-4 human hepatoma cell line can be enhanced to a human liver-like level through the three-dimensional cell shape in a microtubule-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.