Anodizing of aluminum and its alloys is widely investigated and used for corrosion protection, electronic devices, and micro-/nanostructure fabrication. Anodizing of aluminum in acidic solutions causes formation of porous aluminum oxide films, which consists of numerous hexagonal cells perpendicular to the aluminum substrate, and each cell has nanoscale pores at its center. Recently, highly ordered porous aluminum oxide has been widely investigated for various novel nanoapplications. In this review article, we introduce the fundamentals of anodic oxide films including barrier and porous oxides. Then, we summarize the electrolyte species used so far for porous oxide fabrication and describe the self-ordering conditions during anodizing in these electrolyte solutions. Fabrication of highly ordered porous oxides through the vertical section can be achieved by a two-step anodizing and nanoimprint technique. Various nanoapplications based on the ordered porous oxide are also introduced.
The growth behavior of anodic porous alumina formed by anodizing in novel electrolyte solutions, the cyclic oxocarbon acids croconic and rhodizonic acid, was investigated for the first time. High-purity aluminum specimens were anodized in 0.1 M croconic and rhodizonic acid solutions at various constant current densities. An anodic porous alumina film with a cell size of 200-450 nm grew uniformly on an aluminum substrate by rhodizonic acid anodizing at 5-40 Am -2 , and a black, burned oxide was formed at higher current density. The cell size of the porous alumina increased with current density and corresponding anodizing voltage. Anodizing in croconic acid at 293 K caused the formation of thin anodic porous alumina films as well as black, thick burned oxides. The uniformity of the porous alumina improved by increasing the temperature of the croconic acid solution, and anodic porous alumina films with a uniform film thickness were successfully obtained. Our experimental results showed that the cyclic oxocarbon acids croconic and rhodizonic acid could be employed as a suitable electrolyte for the formation of anodic porous alumina films.Key words: Aluminum; Anodizing; Anodic Porous Alumina; Croconic Acid; Rhodizonic Acid IntroductionThe anodizing of aluminum in several different acidic solutions causes the formation of anodic porous alumina (i.e., porous anodic oxide film) with characteristic nanofeatures on aluminum substrates. Porous alumina consists of nano-scale hexagonal cells perpendicular to the substrate, and each cell possesses a nanopore at its center [1,2]. These cells are self-ordered by anodizing under appropriate electrochemical conditions, especially under a high electric field [3,4]. When anodic porous alumina is immersed in boiling distilled water after anodizing, the nanopores are filled by hydroxide (pore-sealing) [5,6]. The sealing process causes the formation of a highly crystalline hydroxide layer on the surface of the anodic oxide, and the hydroxide layer is highly dissolution-resistant in acidic and alkaline solutions. Using these characteristic structural and chemical properties, anodic porous alumina has been widely investigated for many applications: antireflection structures [7,8] [50] acid have been reported to date for the fabrication of anodic porous alumina. Oxalic and malonic acid anodizing have been reported to give rise to self-ordering behavior under suitable anodizing conditions. The organic and inorganic electrolytes used to fabricate anodic porous alumina possess low dissociation constant (pKa) in aqueous solution, except for glycolic and formic acid, are diacids or triacids. However, glycolic and formic acid form dimers via hydrogen bonding in aqueous solution and may behave like diacids [52,53]. The nanofeatures of anodic porous alumina, including cell size (i.e., interpore distance) and pore diameter, are limited by these electrolytes during anodizing. Therefore, the discovery of additional electrolytes is very important in expanding the applicability of porous alum...
Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.
The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10 to 75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V.Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.