In this work, we analysed the satellite-based responses of sea surface temperature (SST) and chlorophylla (chl-a) concentration in the waters of the Exclusive Economic Zone (EEZ) of Cuba to hurricanes that crossed the EEZ between 1998 and 2016. We considered two spatial scales to capture the spatially heterogeneous nature of the effects of hurricanes. A first more fine-grained one where we considered 120 km radius disks centered at every consecutive hurricane position within the EEZ (scale 1) and a second more coarse grained one enclosing the entire EEZ (scale 2). We conclude that the hurricanes induced a weak cooling since 75 and 85% of the SST anomalies at scale 1 and 2, respectively, were smaller than -1 • C. The cooling was mainly caused by the wind, inducing mixing and/or upwelling of subsurface cool waters. The maximum chl-a responses were recorded in the first and second post-storm weeks, with 60% ranging between -0.01 and 0.04 mg m −3 at scale 1, and between -0.07 and 0.02 mg m −3 at scale 2. During those post-storm weeks SST and chl-a anomalies were 18 and 44% higher at scale 1 than at scale 2, respectively. We argue that the transport of chl-a from the deep chlorophyll maximum and/or the rich coastal waters are the dominant mechanisms determining the post-storm chl-a response in the EEZ. We also found that the magnitude of the Island Mass Effect in the EEZ after the passage of the hurricanes was 89% higher than before its passage.
Abstract. Understanding the oceanic response to tropical cyclones (TCs) is of importance for studies on climate change. Although the oceanic effects induced by individual TCs have been extensively investigated, studies on the oceanic response to the passage of consecutive TCs are rare. In this work, we assess the upper-oceanic response to the passage of Hurricanes Dorian and Humberto over the western Sargasso Sea in 2019 using satellite remote sensing and modelled data. We found that the combined effects of these slow-moving TCs led to an increased oceanic response during the third and fourth post-storm weeks of Dorian (accounting for both Dorian and Humberto effects) because of the induced mixing and upwelling at this time. Overall, anomalies of sea surface temperature, ocean heat content, and mean temperature from the sea surface to a depth of 100 m were 50 %, 63 %, and 57 % smaller (more negative) in the third–fourth post-storm weeks than in the first–second post-storm weeks of Dorian (accounting only for Dorian effects), respectively. For the biological response, we found that surface chlorophyll a (chl a) concentration anomalies, the mean chl a concentration in the euphotic zone, and the chl a concentration in the deep chlorophyll maximum were 16 %, 4 %, and 16 % higher in the third–fourth post-storm weeks than in the first–second post-storm weeks, respectively. The sea surface cooling and increased biological response induced by these TCs were significantly higher (Mann–Whitney test, p<0.05) compared to climatological records. Our climatological analysis reveals that the strongest TC-induced oceanographic variability in the western Sargasso Sea can be associated with the occurrence of consecutive TCs and long-lasting TC forcing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.