[1] The relative role of oceanic dynamics and surface heat fluxes in the initiation and development of the Indian Ocean dipole was investigated by analyzing results from an oceanic general circulation model. The model was forced by observed surface wind stress and heat flux fields for 1958 -1997. The results show that it was capable of reproducing observed dipole events over the tropical Indian Ocean. The diagnosis of the mixed-layer heat budget indicates that the SST anomaly (SSTA) in the east pole is primarily induced by anomalous surface latent heat flux and vertical temperature advection, whereas in the west pole it is mainly caused by meridional and vertical temperature advection anomalies. In both regions shortwave radiation anomalies tend to damp the SSTA. The ocean Rossby waves are essential in linking the anomalous wind and SST off Sumatra and subsurface temperature variations in southwest Indian Ocean.
The Tsuchiya jets (TJs) are narrow eastward currents, located a few degrees on either side of the equator at depths from 200 to 500 m in the Pacific Ocean. In this study, non-eddy-resolving, oceanic general circulation models (OGCMs) are used to investigate the dynamics of the southern TJ. Most solutions are found in a rectangular basin extending 100°zonally and from 40°S to 10°N. They are forced by idealized zonal and meridional winds representing the trades and the southerly winds near the South American coast, by a prescribed interocean circulation (IOC) that enters the basin through the southern boundary and exits through the western boundary from 2°to 6°N (the model's Indonesian passages), and by surface heating that warms the ocean in the Tropics. A suite of solutions is presented to isolate effects of each forcing and mixing process. A few solutions are also found to a global OGCM driven by realistic forcings. Solutions forced by all of the aforementioned processes and with minimal diffusion resemble the observed flow field in the tropical South Pacific. A narrow eastward current, the model southern TJ, flows across the basin along the southern edge of a thick equatorial thermostad, and upwells at the eastern boundary. Its deeper part is supplied by water that leaves the western boundary current somewhat south of the equator. Its shallower part originates from water that diverges from the deep portion of the Equatorial Undercurrent (EUC); as a result, the TJ transport increases to the east and the TJ warms as it flows across the basin. A major part of the water that upwells at the eastern boundary is supplied by the TJ with a minor contribution from the southern boundary region. In idealized-basin solutions without forcing either by the IOC or meridional wind, the TJ is weak or absent. These, and other, properties suggest that the dynamics of the model's TJ are those of an arrested front, which in a 2 1 ⁄2-layer model are generated when characteristics of the flow merge or intersect. When diffusivity is increased to commonly used values, the thermostad is less well defined or even absent and the TJ is weak, suggesting that excessive diffusion is the reason why TJs are not present in many previous OGCMs. In the solution to a global OGCM, the southern TJ still exists without the IOC, although it is warmed by 1°C, indicating that much of its water is supplied by an overturning cell confined within the Pacific basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.