The future of energy is complex, with fluctuating renewable resources in increasingly distributed systems. It is suggested that blockchain technology is a timely innovation with potential to facilitate this future. Peerto-peer (P2P) microgrids can support renewable energy as well as economically empower consumers and prosumers. However, the rapid development of blockchain and prospects for P2P energy networks is coupled with several grey areas in the institutional landscape. The purpose of this paper is to holistically explore potential challenges of blockchain-based P2P microgrids, and propose practical implications for institutional development as well as academia. An analytical framework for P2P microgrids is developed based on literature review as well as expert interviews. The framework incorporates 1) Technological, 2) Economic, 3) Social, 4) Environmental and 5) Institutional dimensions. Directions for future work in practical and academic contexts are identified. It is suggested that bridging the gap from technological to institutional readiness would require the incorporation of all dimensions as well as their inter-relatedness. Gradual institutional change leveraging community-building and regulatory sandbox approaches are proposed as potential pathways in incorporating this multi-dimensionality, reducing cross-sectoral silos, and facilitating interoperability between current and future systems. By offering insight through holistic conceptualization, this paper aims to contribute to expanding research in building the pillars of a more substantiated institutional arch for blockchain in the energy sector. Highlights:-Blockchain has significant potential in energy sector development-Holistic review of factors of blockchain-based P2P microgrids-Multi-dimensional analytical framework proposed
As the world strives to decarbonize, the effective use of renewable energy has become an important issue, and P2P power trading is expected to unlock the value of renewable energy and encourage its adoption by enabling power trading based on user needs and user assets. In this study, we constructed a bidding agent that optimizes bids based on electricity demand and generation forecasts, user preferences for renewable energy (renewable energy-oriented or economically oriented), and owned assets in a P2P electricity trading market, and automatically performs electricity trading. The agent algorithm was used to evaluate the differences in trading content between different asset holdings and preferences by performing power sharing in a real scale environment. The demonstration experiments show that: EV-owning and economy-oriented users can trade more favorably in the market with a lower average execution price than non-EV-owning users; forecasting enables economy-enhancing moves to store nighttime electricity in batteries in advance in anticipation of future power generation and market prices; EV-owning and renewable energy-oriented users can trade more favorably in the market with other users. EV-owning and renewable energy-oriented users can achieve higher RE ratios at a cost of about +1 yen/kWh compared to other users. By actually issuing charging and discharging commands to the EV and controlling the charging and discharging, the agent can control the actual use of electricity according to the user’s preferences.
To further implement decentralized renewable energy resources, blockchain based peer-to-peer (P2P) energy trading is gaining attention and its architecture has been proposed with virtual demonstrations. In this paper, to further socially implement this concept, a blockchain based peer to peer energy trading system which could coordinate with energy control hardware was constructed, and a demonstration experiment was conducted. Previous work focused on virtually matching energy supply and demand via blockchain P2P energy markets, and our work pushes this forward by demonstrating the possibility of actual energy flow control. In this demonstration, Plug-in Hybrid Electrical Vehicles(PHEVs) and Home Energy Management Systems(HEMS) actually used in daily life were controlled in coordination with the blockchain system. In construction, the need of a multi-tagged continuous market was found and proposed. In the demonstration experiment, the proposed blockchain market and hardware control interface was proven capable of securing and stably transmitting energy within the P2P energy system. Also, by the implementation of multi-tagged energy markets, the number of transactions required to secure the required amount of electricity was reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.