Angiogenesis plays a crucial role in tumor growth, with an undisputed contribution of resident endothelial cells (EC) to new blood vessels in the tumor. Here, we report the definition of a small population of vascular-resident stem/progenitor-like EC that contributes predominantly to new blood vessel formation in the tumor. Although the surface markers of this population are similar to other ECs, those from the lung vasculature possess colony-forming ability in vitro and contribute to angiogenesis in vivo. These specific ECs actively proliferate in lung tumors, and the percentage of this population significantly increases in the tumor vasculature relative to normal lung tissue. Using genetic recombination and bone marrow transplant models, we show that these cells are phenotypically true ECs and do not originate from hematopoietic cells. After treatment of tumors with antiangiogenic drugs, these specific ECs selectively survived and remained in the tumor. Together, our results established that ECs in the peripheral vasculature are heterogeneous and that stem/progenitor-like ECs play an indispensable role in tumor angiogenesis as EC-supplying cells. The lack of susceptibility of these ECs to antiangiogenic drugs may account for resistance of the tumor to this drug type. Thus, inhibiting these ECs might provide a promising strategy to overcome antiangiogenic drug resistance.
Graphical AbstractHighlights d TAK1 inhibits endothelial cell death induced by TNF-a-TNFR1 signaling d Endothelial TAK1 is essential for protecting blood vessels from intestinal microbes d Under inflammation, ECs actively protect themselves from TNF-a-induced cell death d Targeting endothelial TAK1 may become an alternative for anti-angiogenic therapy SUMMARY TNF-a is a pleiotropic cytokine that has the potential to induce apoptosis under inflammation. How endothelial cells (ECs) are spared from this fate in inflammatory environments where TNF-a is present is not known.Here, we show that TGF-b-activated kinase 1 (TAK1) ensures EC survival and maintains vascular integrity upon TNF-a stimulation. Endothelial-specific TAK1 knockout mice exhibit intestinal and liver hemorrhage due to EC apoptosis, leading to vascular destruction and rapid death. This EC apoptosis was induced by TNF-a from myeloid cells responding to intestinal microbiota. TNF-a secretion associated with inflammation also induced vascular defects in inflamed organs. Additionally, we determined that TAK1 deletion in tumor ECs resulted in blood vessel and hence tumor regression. Our results illuminate mechanisms ensuring survival of intestinal and liver ECs under physiological conditions and ECs of other organs under inflammatory conditions that could be exploited for anti-angiogenic therapy to treat cancer.
Vascular normalization in tumors may improve drug delivery and anti-tumor immunity. Angiogenesis inhibitors induce hypoxia, which may facilitate malignant progression; therefore, we investigated other methods to promote vascular maturation. Here, we show that lysophosphatidic acid (LPA) enhances blood flow by promoting fine vascular networks, thereby improving vascular permeability and suppressing tumor growth when combined with anti-cancer drug treatment. Six different G protein-coupled receptors have been identified as LPA receptors (LPA1-6). In studies using mutant mice, we found that LPA4 is involved in vascular network formation. LPA4 activation induces circumferential actin bundling beneath the cell membrane and enhances linear adherens junction formation by VE-cadherin in endothelial cells. Therefore, we conclude that activation of LPA4 is a promising approach for vascular regulation.
Alterations to the tumor stromal microenvironment induced by chemotherapy could influence the behavior of cancer cells. In the tumor stromal microenvironment, cancer-associated fibroblasts (CAFs) play an important role. Because the receptor tyrosine kinase Axl and its ligand Gas6 could be involved in promoting non-small cell lung cancer (NSCLC), we investigated the role of Gas6 secreted by CAFs during chemotherapy in NSCLC. In a murine model, we found that Gas6 expression by CAFs was upregulated following cisplatin treatment. Gas6 expression might be influenced by intratumoral hypoperfusion during chemotherapy, and it increased after serum starvation in a human lung CAF line, LCAFhTERT. Gas6 is associated with LCAFhTERT cell growth. Recombinant Gas6 promoted H1299 migration, and conditioned medium (CM) from LCAFhTERT cells activated Axl in H1299 cells and promoted migration. Silencing Gas6 in LCAFhTERT reduced the Axl activation and H1299 cell migration induced by CM from LCAFhTERT. In clinical samples, stromal Gas6 expression increased after chemotherapy. Five-year disease-free survival rates for patients with tumor Axl- and stromal Gas6-positive tumors (n = 37) was significantly worse than for the double negative group (n = 12) (21.9% vs 51.3%, p = 0.04). Based on these findings, it is presumed that Gas6 derived from CAFs promotes migration of Axl-expressing lung cancer cells during chemotherapy and is involved in poor clinical outcome.
The structure and function of tumor blood vessels profoundly affects the tumor microenvironment. Signals mediated through the lysophosphatidic acid receptor 4 (LPA4) promote vascular network formation to restore normal vascular barrier function in subcutaneous tumors and thus improve drug delivery. However, the characteristics of the vasculature vary by organ and tumor types, and how drug delivery and leukocyte trafficking are affected by modification of vascular function by LPA in different cancers is unclear. Here, we show that LPA4 activation promotes the formation of fine vascular structures in brain tumors. RhoA/ROCK signaling contributed to LPA-induced endothelial cell-cell adhesion, and RhoA/ROCK activity following LPA4 stimulation regulated expression of VCAM-1. This resulted in increased lymphocyte infiltration into the tumor. LPA improved delivery of exogenous IgG into brain tumors and enhanced the anticancer effect of antiprogrammed cell death-1 antibody therapy. These results indicate the effects of LPA on vascular structure and function apply not only to chemotherapy but also to immunotherapy.Significance: These findings demonstrate that lysophosphatidic acid, a lipid mediator, promotes development of a fine capillary network in brain tumors by inducing tightening of endothelial cell-to-cell adhesion, facilitating improved drug delivery, and lymphocyte penetration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.