High-intensity intermittent (or interval) training (HIIT) has started to gain popularity as a time-effective approach to providing beneficial effects to the brain and to peripheral organs. However, it still remains uncertain whether HIIT enhances hippocampal functions in terms of neurogenesis and spatial memory due to unconsidered HIIT protocol for rodents. Here, we established the HIIT regimen for rats with reference to human study. Adult male Wistar rats were assigned randomly to Control, moderate-intensity continuous training (MICT; 20 m/min, 30 min/day, 5 times/week), and HIIT (60 m/min, 10 30-s bouts of exercise, interspaced with 2.5 min of recovery, 5 times/week) groups. The ratios of exercise time and volume between MICT and HIIT were set as 6:1 and 2:1–4:1, respectively. After 4 weeks of training, all-out time in the incremental exercise test was prolonged for exercise training. In skeletal muscle, the plantaris citrate synthase activity significantly increased only in the HIIT group. Simultaneously, both HIIT and MICT led to enhanced spatial memory and adult hippocampal neurogenesis (AHN) as well as enhanced protein levels of hippocampal brain-derived neurotrophic factor (BDNF) signaling. Collectively, we suggest that HIIT could be a time-efficient exercise protocol that enhances hippocampal memory and neurogenesis in rats and is associated with hippocampal BDNF signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.