High-intensity intermittent (or interval) training (HIIT) has started to gain popularity as a time-effective approach to providing beneficial effects to the brain and to peripheral organs. However, it still remains uncertain whether HIIT enhances hippocampal functions in terms of neurogenesis and spatial memory due to unconsidered HIIT protocol for rodents. Here, we established the HIIT regimen for rats with reference to human study. Adult male Wistar rats were assigned randomly to Control, moderate-intensity continuous training (MICT; 20 m/min, 30 min/day, 5 times/week), and HIIT (60 m/min, 10 30-s bouts of exercise, interspaced with 2.5 min of recovery, 5 times/week) groups. The ratios of exercise time and volume between MICT and HIIT were set as 6:1 and 2:1–4:1, respectively. After 4 weeks of training, all-out time in the incremental exercise test was prolonged for exercise training. In skeletal muscle, the plantaris citrate synthase activity significantly increased only in the HIIT group. Simultaneously, both HIIT and MICT led to enhanced spatial memory and adult hippocampal neurogenesis (AHN) as well as enhanced protein levels of hippocampal brain-derived neurotrophic factor (BDNF) signaling. Collectively, we suggest that HIIT could be a time-efficient exercise protocol that enhances hippocampal memory and neurogenesis in rats and is associated with hippocampal BDNF signaling.
A pre-diabetic population has an increased risk of cognitive decline as well as type 2 diabetes mellitus (T2DM). The present study investigated whether the progression of memory dysfunction and dysregulated brain glycogen metabolism is prevented with four months of exercise intervention from the pre-symptomatic stage in T2DM rat model. Memory function and biochemical and molecular profiles were assessed in the pre-symptomatic stage of OLETF rats, a T2DM model, with LETO rats as genetic control. These rats were subjected to light- or moderate-intensity treadmill running for four months with repetition of the same experiments. Significant hippocampal-dependent memory dysfunction was observed in the pre-symptomatic stage of OLETF rats, accompanied by downregulated levels of hippocampal monocarboxylate transporter 2 (MCT2), a neuronal lactate-transporter, without alteration in hippocampal glycogen levels. Four months of light or moderate exercise from the pre-symptomatic stage of T2DM normalized glycemic parameters and also hippocampal molecular normalization through MCT2, glycogen, and brain-derived neurotrophic factor (BDNF) levels with the improvement of memory dysfunction in OLETF rats. A four-month exercise regimen from the pre-symptomatic stage of T2DM at light and moderate intensities contributed to the prevention of the development of T2DM and the progression of cognitive decline with hippocampal lactate-transport and BDNF improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.