Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML--supportive care--and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects.
Mixed phenotype acute leukaemia (MPAL) is a high-risk subtype of leukaemia with myeloid and lymphoid features, limited genetic characterization, and a lack of consensus regarding appropriate therapy. Here we show that the two principal subtypes of MPAL, T/myeloid (T/M) and B/myeloid (B/M), are genetically distinct. Rearrangement of ZNF384 is common in B/M MPAL, and biallelic WT1 alterations are common in T/M MPAL, which shares genomic features with early T-cell precursor acute lymphoblastic leukaemia. We show that the intratumoral immunophenotypic heterogeneity characteristic of MPAL is independent of somatic genetic variation, that founding lesions arise in primitive haematopoietic progenitors, and that individual phenotypic subpopulations can reconstitute the immunophenotypic diversity in vivo. These findings indicate that the cell of origin and founding lesions, rather than an accumulation of distinct genomic alterations, prime tumour cells for lineage promiscuity. Moreover, these findings position MPAL in the spectrum of immature leukaemias and provide a genetically informed framework for future clinical trials of potential treatments for MPAL.
Acute erythroid leukemia (AEL) is a high risk leukemia of poorly understood genetic basis, with controversy regarding diagnosis in the spectrum of myelodysplasia and myeloid leukemia. We compared genomic features of 159 childhood and adult AEL cases to non-AEL myeloid disorders, and defined 5 age-related subgroups with distinct transcriptional profiles: adult, TP53-mutated; NPM1-mutated; KMT2A-mutated/rearranged; adult, DDX41-mutated; and pediatric, NUP98-rearranged. Genomic features influenced outcome, with NPM1 mutations and HOXB9 over-expression associated with favorable prognosis, and TP53, FLT3 or RB1 alterations associated with poor survival. Targetable signaling mutations were present in 45% of cases, and included recurrent mutations of ALK and NTRK1, the latter of which drive erythroid leukemogenesis sensitive to TRK inhibition. This genomic landscape of AEL provides the framework for accurate diagnosis and risk stratification of this disease, and the rationale for testing targeted therapies in this high-risk leukemia.
Pediatric acute megakaryoblastic leukemia in non-Down syndrome (AMKL) is a unique subtype of acute myeloid leukemia (AML). Novel CBFA2T3-GLIS2 and NUP98-KDM5A fusions recurrently found in AMKL were recently reported as poor prognostic factors. However, their detailed clinical and molecular characteristics in patients treated with recent improved therapies remain uncertain. We analyzed molecular features of 44 AMKL patients treated on two recent Japanese AML protocols, the AML99 and AML-05 trials. We identified CBFA2T3-GLIS2, NUP98-KDM5A, RBM15-MKL1, and KMT2A rearrangements in 12 (27%), 4 (9%), 2 (5%), and 3 (7%) patients, respectively. Among 459 other AML patients, NUP98-KDM5A was identified in 3 patients, whereas CBFA2T3-GLIS2 and RBM15-MKL1 were only present in AMKL. GATA1 mutations were found in 5 patients (11%). Four-year overall survival (OS) and event-free survival (EFS) rates of CBFA2T3-GLIS2-positive patients in AMKL were 41.7% and 16.7%, respectively. Three-year cumulative incidence of relapse in CBFA2T3-GLIS2-positive patients was significantly higher than that of CBFA2T3-GLIS2-negative patients (75.0% vs. 35.7%, P = 0.024). In multivariate analyses, CBFA2T3-GLIS2 was an independent poor prognostic factor for OS (HR, 4.34; 95% CI, 1.31-14.38) and EFS (HR, 2.95; 95% CI, 1.20-7.23). Furthermore, seven (54%) of 13 infant AMKL patients were CBFA2T3-GLIS2-positive. Notably, out of 7 CBFA2T3-GLIS2-positive infants, six (86%) relapsed and five (71%) died. Moreover, all of CBFA2T3-GLIS2-positive patients who experienced induction failure (n = 3) were infants, indicating worse prognosis of CBFA2T3-GLIS2-positive infants. These findings indicated the significance of CBFA2T3-GLIS2 as a poor prognostic factor in AMKL patients, particularly in infants.
Acute myeloid leukemia (AML) accounts for 25% of pediatric leukemia and affects approximately 180 patients annually in Japan. The treatment outcome for pediatric AML has improved through advances in chemotherapy, hematopoietic stem cell transplantation (HSCT), supportive care, and optimal risk stratification. Currently, clinical pediatric AML studies are conducted separately according to the AML subtypes: de novo AML, acute promyelocytic leukemia (APL), and myeloid leukemia with Down syndrome (ML-DS). Children with de novo AML are treated mainly with anthracyclines and cytarabine, in some cases with HSCT, and the overall survival (OS) rate now approaches 70%. Children with APL are treated with an all-trans retinoic acid (ATRA)-combined regimen with an 80-90% OS. Children with ML-DS are treated with a less intensive regimen compared with non-DS patients, and the OS is approximately 80%. HSCT in first remission is restricted to children with high-risk de novo AML only. To further improve outcomes, it will be necessary to combine more accurate risk stratification strategies using molecular genetic analysis with assessment of minimum residual disease, and the introduction of new drugs in international collaborative clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.