In the originally published version of this article, the ultra-high blood alcohol concentration was mistakenly given as 400 mg/L instead of 400 mg/dL. The correction has now been made online. This error does not affect the conclusions of the paper. The authors apologize for any confusion that this error may have caused.
Multidrug resistant microbes present in the environment are a potential public health risk. In this study, we investigate the presence of New Delhi metallo-β-lactamase 1 (NDM-1) producing bacteria in the 99 water samples in Beijing City, including river water, treated drinking water, raw water samples from the pools and sewage from 4 comprehensive hospitals. For the bla
NDM-1 positive isolate, antimicrobial susceptibility testing was further analyzed, and Pulsed Field Gel Electrophoresis (PFGE) was performed to determine the genetic relationship among the NDM-1 producing isolates from sewage and human, as well as the clinical strains without NDM-1. The results indicate that there was a higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals, while no NDM-1 producing isolates were recovered from samples obtained from the river, drinking, or fishpond water. Surprisingly, these isolates were markedly different from the clinical isolates in drug resistance and pulsed field gel electrophoresis profiles, suggesting different evolutionary relationships. Our results showed that the hospital sewage may be one of the diffusion reservoirs of NDM-1 producing bacteria.
Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks. Claudins are aberrantly expressed in aggressive breast cancer. However, the relationship between claudins and VM formation is not clear. We examined VM in two human breast cancer cell lines with different aggressive capabilities (MDA-MB-231 and MCF-7 cells) and one human umbilical vein endothelial cell line (HUVEC). Both HUVEC and MDA-MB-231 cells formed vascular channels in Matrigel cultures, while MCF-7 cells did not. Western blot analysis revealed a possible correlation between claudin-4 and -6 expression in breast cancer cell lines and tumor aggressiveness, with protein levels correlating with the ability to form vascular channels. Treatment of MDA-MB-231 and HUVEC cells with claudin-4 monoclonal antibodies completely inhibited the ability of cells to form vascular channels. Moreover, knockdown of claudin-4 by short hairpin RNA completely inhibited tubule formation in MDA-MB-231 cells. Overexpression of claudin-4 in MCF-7 cells induced formation of vascular channels. Immunocytochemistry revealed that membranous claudin-4 protein was significantly associated with vascular channel formation. Collectively, these results indicate that claudin-4 may play a critical role in VM in human breast cancer cells, opening new opportunities to improve aggressive breast cancer therapy.
Propoxur is considered a prime etiological suspect of increasing tumor incidence, but the role is still undefined. In this study, two human breast cancer cells lines, MCF-7 and MDA-MB-231 cells, were used as cell models. Cells were respectively treated with 0, 0.01, 1, or 100 μM propoxur. PD98059, a MEK inhibitor, was administered to block the ERK/MAPK pathway. Migration and reactive oxygen species were measured by wound healing and Transwell assays, and flow cytometry. Protein expression and subcellular location were detected by western blotting and immunofluorescence staining, respectively. Results showed that propoxur treatment enhanced cell migration and invasion in a dose-dependent manner, while MMP-2 expression, but not MMP-9, was significantly increased in two cell lines. Meanwhile, the treatment increased intracellular reactive oxygen species, Nrf2 expression and nuclear translocation, and ERK1/2 phosphorylation. Inversely, inhibition of ERK1/2 activation with PD98059 significantly attenuated propoxur-induced Nrf2 expression and nuclear translocation. Moreover, PD98059 suppressed propoxur-induced cell migration and invasion, and MMP-2 overexpression. Collectively, these results indicate that propoxur can trigger reactive oxygen species overproduction, further promoting breast cancer cell migration and invasion by regulating the ERK/Nrf2 signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.