Background/Aim: Deferoxamine (DFO), an iron chelator, has been reported to induce hypoxia-inducible factor-1α (HIF-1α) expression. HIF-1α plays a critical role in promoting tumor metastasis. However, the molecular mechanisms underlying induction of HIF-1α in breast cancer cells remain unknown. Our aim was to ascertain whether DFO enhanced cancer metastasis in MDA-MB-231 cells. Methods: Cellular reactive oxygen species (ROS) was measured by flow cytometry. Cell migration was determined by wound healing and transwell assays. Protein and mRNA expression were detected by western blotting and RT-PCR, respectively. Results: DFO treatment enhanced cell migration and invasion, while HIF-1α expression was significantly up-regulated at the post-transcriptional level. However, treatment with a NADPH oxidase inhibitor, diphenyleneiodonium (DPI), strongly inhibited ROS generation and HIF-1α expression, as well as cell migration and invasion. Notably, DFO treatment increased extracellular signal-regulated kinase (ERK)1/2 phosphorylation. Inhibition of ROS production with DPI attenuated DFO-induced ERK1/2 activation. Moreover, a MEK1 inhibitor, PD98059, suppressed DFO-induced cell migration and invasion. Conclusion: DFO-induced HIF-1α expression involves a cascade of signaling events including ROS generation, activation of ERK signaling, and subsequent promotion of cell migration and invasion. These findings indicate a risk associated with DFO and other iron chelators for treatment of tumors with invasive potential.
Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks. Claudins are aberrantly expressed in aggressive breast cancer. However, the relationship between claudins and VM formation is not clear. We examined VM in two human breast cancer cell lines with different aggressive capabilities (MDA-MB-231 and MCF-7 cells) and one human umbilical vein endothelial cell line (HUVEC). Both HUVEC and MDA-MB-231 cells formed vascular channels in Matrigel cultures, while MCF-7 cells did not. Western blot analysis revealed a possible correlation between claudin-4 and -6 expression in breast cancer cell lines and tumor aggressiveness, with protein levels correlating with the ability to form vascular channels. Treatment of MDA-MB-231 and HUVEC cells with claudin-4 monoclonal antibodies completely inhibited the ability of cells to form vascular channels. Moreover, knockdown of claudin-4 by short hairpin RNA completely inhibited tubule formation in MDA-MB-231 cells. Overexpression of claudin-4 in MCF-7 cells induced formation of vascular channels. Immunocytochemistry revealed that membranous claudin-4 protein was significantly associated with vascular channel formation. Collectively, these results indicate that claudin-4 may play a critical role in VM in human breast cancer cells, opening new opportunities to improve aggressive breast cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.