The therapeutic efficacy of CT guided PEI for hyperfunctioning pheochromocytoma is definite and worth widespread application because the procedure is safe, microtraumatic and less costly, and has low morbidity.
In order to study the relationships between the aerodynamic drag of maglev and other factors in the evacuated tube, the formula of aerodynamic drag was deduced based on the basic equations of aerodynamics and then the calculated result was confirmed at a low speed on an experimental system developed by Superconductivity and New Energy R&D Center of South Jiaotong University. With regard to this system a high temperature superconducting magnetic levitation vehicle was motivated by a linear induction motor (LIM) fixed on the permanent magnetic guideway. When the vehicle reached an expected speed, the LIM was stopped. Then the damped speed was recorded and used to calculate the experimental drag. The two results show the approximately same relationship between the aerodynamic drag on the maglev and the other factors such as the pressure in the tube, the velocity of the maglev and the blockage ratio. Thus, the pressure, the velocity, and the blockage ratio are viewed as the three important factors that contribute to the energy loss in the evacuated tube transportation.
To choose a reasonable mode of three-phase winding for the improvement of the operating efficiency of cascaded linear induction motor, the time and space characteristics of magnetomotive force were investigated. The ideal model of the cascaded linear induction motor was built, in which the B and C-phase windings are respectively separated from the A-phase winding by a distance of d and e slots pitch and not overlapped. By changing the values of d and e from 1 to 5, we can obtain 20 different modes of three-phase winding with the different combinations of d and e. Then, the air-gap magnetomotive forces of A-, Band nd C-phase windings were calculated by the magnetomotive force theory. According to the transient superposition of magnetomotive forces of A-, Band nd C-phase windings, the theoretical and simulated synthetic fundamental magnetomotive forces under 20 different arrangement modes were obtained. The results show that the synthetic magnetomotive force with d = 2 and e = 4 is close to forward sinusoidal traveling wave and the synthetic magnetomotive force with d = 4 and e = 2 is close to backward sinusoidal traveling wave, and their amplitudes and wave velocities are approximately constant and equal. In both cases, the motor could work normally with a high efficiency, but under other 18 arrangement modes (d = 1, e = 2; d = 1, e = 3; d = 1, e = 4;…), the synthetic magnetomotive force presents obvious pulse vibration and moves with variable velocity, which means that the motor did not work normally and had high energy loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.