3-Aminobenzeneboronic acid functionalized graphene quantum dots (APBA-GQDs) were synthesized and used as a selective and sensitive sensing system for glucose. Combined with microdialysis, glucose was monitored successfully in vivo in the striatum of rat.
A novel composite of vinyl group functionalized multiwalled carbon nanotubes (MWCNTs) molecularly imprinted polymer (MIP) was synthesized and applied as a molecular recognition element to construct an electrochemical sensor for parathion-methyl in this paper. The special molecular recognition properties of parathion-methyl mainly dominated by π-π, p-π interaction and hydrogen bonding formed among functional monomer, template and matrix. A series of electrochemical experiment results proved that the prepared material had good adsorption capacity and fast mass transfer rate to parathion-methyl. The good selectivity of the sensor allowed fine discrimination between parathion and paraoxon, which had similar structures to parathion-methyl. The response of the MIPs was linearly proportional to the concentration of parathion-methyl over the range of 2.0 × 10(-7) to 1.0 × 10(-5) mol L(-1) with a lower detection limit of 6.7 × 10(-8) mol L(-1) (S/N = 3). This sensor was also applied in the detection of parathion-methyl in pear and cucumber with average recoveries of between 94.9% and 106.2% (RSD < 5%) being obtained. The results mentioned above show that the novel electrochemical sensor is an ideal device for the real-time determination of parathion-methyl in real samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.