Purposes To investigate the frequency and type of both chromosomal abnormalities and Y chromosome microdeletions and analyze their association with defective spermatogenesis in Chinese infertile men. Methods This is a single center study. Karyotyping using G-banding and screening for Y chromosome microdeletion by multiplex polymerase chain reactio(PCR)were performed in 200 controls and 1,333 infertile men, including 945 patients with non-obstructive azoospermia and 388 patients with severe oligozoospermia. Results Out of 1,333 infertile patients, 154(11.55%) presented chromosomal abnormalities. Of these, 139 of 945 (14.71%) were from the azoospermic and 15 of 388 (3.87%) from the severe oligozoospermic patient groups. The incidence of sex chromosomal abnormalities in men with azoospermia was 11.53% compared with 1.03% in men with severe oligozoospermia (P < 0.01). Also 144 of 1,333 (10.80%) patients presented Y chromosome microdeletions. The incidence of azoospermia factor(AZF) microdeletion was 11.75% and 8.51% in patients with azoospermia and severe oligozoospermia respectively. Deletion of AZFc was the most common and deletions in AZFa or AZFab or AZFabc were found in azoospermic men. In addition, 34 patients had chromosomal abnormalities among the 144 patients with Y chromosome microdeletions. No chromosomal abnormality and microdeletion in AZF region were detected in controls. Conclusions There was a high incidence (19.80%) of chromosomal abnormalities and Y chromosomal microdeletions in Chinese infertile males with azoospermia or severe oligozoospermia. These findings strongly suggest that genetic screening should be advised to infertile men before starting assisted reproductive treatments.
Nanoscale polymeric micelles have promising applications as drug delivery systems (DDS). In this work, to improve the anti-tumor activity and eliminate toxicity of the commercial formulation (cremophor EL and ethanol) of paclitaxel (PTX), we developed biodegradable poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles entrapping PTX by a simple one-step solid dispersion method, which is without any surfactants or additives and is easy to scale up. In addition, the PTX micelles could be lyophilized into powder without any adjuvant and the re-dissolved PTX micelles are stable and homogeneous. The prepared PTX micelles have a mean particle size of 38.06 ± 2.30 nm, a polydispersity index of 0.168 ± 0.014, a drug loading of 14.89 ± 0.06% and an encapsulation efficiency of 99.25 ± 0.38%. A molecular modeling study implied that PTX interacted with PCL as a core, which was embraced by PEG as a shell. The encapsulation of PTX in polymeric micelles enhanced its cytotoxicity by increasing the uptake by LL/2 cells. A sustained in vitro release behavior and slow extravasation behavior from blood vessels in a transgenic zebrafish model were observed in the PTX micelles. Furthermore, compared with Taxol®, the PTX micelles were more effective in suppressing tumor growth in the subcutaneous LL/2 tumor model. The PTX micelles also inhibited metastases in the pulmonary metastatic LL/2 tumor model and prolonged survival in both mouse models. Pharmacokinetic and tissue distribution studies showed that after PTX was encapsulated in polymeric micelles, the biodistribution pattern of PTX was altered and the PTX concentration in tumors was increased compared with Taxol® after intravenous injection. In conclusion, we have developed a polymeric micelles entrapping PTX that enhanced cytotoxicity in vitro and improved anti-tumor activity in vivo with low systemic toxicity on pulmonary carcinoma. The biodegradable MPEG-PCL micelles entrapping PTX may have promising applications in pulmonary carcinoma therapy.
The reported effects of the glutathione S-transferase (GSTs) genes (GSTM1, GSTT1, and GSTP1) on male factor infertility have been inconsistent and even contradictory. Here, we conducted a case-control study to investigate the association between functionally important polymorphisms in GST genes and idiopathic male infertility. The study group consisted of 361 men with idiopathic azoospermia, 118 men with idiopathic oligospermia, and 234 age-matched healthy fertile male controls. Genomic DNA was extracted from the peripheral blood, and analyzed by polymerase chain reaction and restriction fragment length polymorphism analysis. There was a significant association between the GSTP1 variant genotype (Ile/Val + Val/Val) with idiopathic infertility risk (odds ratio [OR]: 1.53; 95% confidence interval [CI]: 1.11–2.11; P = 0.009). Similarly, a higher risk of infertility was noted in individuals carrying a genotype combination of GSTT1-null and GSTP1 (Ile/Val + Val/Val) (OR: 2.17; 95% CI: 1.43–3.31; P = 0.0002). These results suggest an increased risk of the GSTP1 variant genotype (Ile/Val + Val/Val) for developing male factor infertility. Our findings also underrate the significance of the effect of GSTM1 and/or GSTT1 (especially the former) in modulating the risk of male infertility in males from Sichuan, southwest China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.