PurposeTumor associated macrophages (TAMs) are considered with the capacity to have both negative and positive effects on tumor growth. The prognostic value of TAM for survival in patients with solid tumor remains controversial.Experimental DesignWe conducted a meta-analysis of 55 studies (n = 8,692 patients) that evaluated the correlation between TAM (detected by immunohistochemistry) and clinical staging, overall survival (OS) and disease free survival (DFS). The impact of M1 and M2 type TAM (n = 5) on survival was also examined.ResultsHigh density of TAM was significantly associated with late clinical staging in patients with breast cancer [risk ratio (RR) = 1.20 (95% confidence interval (CI), 1.14–1.28)] and bladder cancer [RR = 3.30 (95%CI, 1.56–6.96)] and with early clinical staging in patients with ovarian cancer [RR = 0.52 (95%CI, 0.35–0.77)]. Negative effects of TAM on OS was shown in patients with gastric cancer [RR = 1.64 (95%CI, 1.24–2.16)], breast cancer [RR = 8.62 (95%CI, 3.10–23.95)], bladder cancer [RR = 5.00 (95%CI, 1.98–12.63)], ovarian cancer [RR = 2.55 (95%CI, 1.60–4.06)], oral cancer [RR = 2.03 (95%CI, 1.47–2.80)] and thyroid cancer [RR = 2.72 (95%CI, 1.26–5.86)],and positive effects was displayed in patients with colorectal cancer [RR = 0.64 (95%CI, 0.43–0.96)]. No significant effect was showed between TAM and DFS. There was also no significant effect of two phenotypes of TAM on survival.ConclusionsAlthough some modest bias cannot be excluded, high density of TAM seems to be associated with worse OS in patients with gastric cancer, urogenital cancer and head and neck cancer, with better OS in patients with colorectal cancer.
Nanocarriers with positive surface charges are known for their toxicity which has limited their clinical applications. The mechanism underlying their toxicity, such as the induction of inflammatory response, remains largely unknown. In the present study we found that injection of cationic nanocarriers, including cationic liposomes, PEI, and chitosan, led to the rapid appearance of necrotic cells. Cell necrosis induced by cationic nanocarriers is dependent on their positive surface charges, but does not require RIP1 and Mlkl. Instead, intracellular Na+ overload was found to accompany the cell death. Depletion of Na+ in culture medium or pretreatment of cells with the Na+/K+-ATPase cation-binding site inhibitor ouabain, protected cells from cell necrosis. Moreover, treatment with cationic nanocarriers inhibited Na+/K+-ATPase activity both in vitro and in vivo. The computational simulation showed that cationic carriers could interact with cation-binding site of Na+/K+-ATPase. Mice pretreated with a small dose of ouabain showed improved survival after injection of a lethal dose of cationic nanocarriers. Further analyses suggest that cell necrosis induced by cationic nanocarriers and the resulting leakage of mitochondrial DNA could trigger severe inflammation in vivo, which is mediated by a pathway involving TLR9 and MyD88 signaling. Taken together, our results reveal a novel mechanism whereby cationic nanocarriers induce acute cell necrosis through the interaction with Na+/K+-ATPase, with the subsequent exposure of mitochondrial damage-associated molecular patterns as a key event that mediates the inflammatory responses. Our study has important implications for evaluating the biocompatibility of nanocarriers and designing better and safer ones for drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.